Page 174 - 《应用声学》2022年第5期
P. 174

850                                                                                  2022 年 9 月


                 recognition[C]. Interspeech, 2018.                Interspeech, 2017.
             [23] Woo S, Park J, Lee J Y, et al. CBAM: convolutional block  [30] Jiang P, Fu H, Tao H, et al.  Parallelized convolu-
                 attention module[C]. European Conference on Computer  tional recurrent neural network with spectral features
                 Vision, 2018.                                     for speech emotion recognition[J]. IEEE Access, 2019, 7:
             [24] Burkhardt F, Paeschke A, Rolfes M, et al. A database of  90368–90377.
                 German emotional speech[C]. Interspeech, 2005.  [31] 徐华南, 周晓彦, 姜万, 等. 基于 3D 和 1D 多特征融合的语音
             [25] Busso C, Bulut M, Lee C, et al. IEMOCAP: interactive  情感识别算法 [J]. 声学技术, 2021, 40(4): 496–502.
                 emotional dyadic motion capture database[J]. Language  Xu Huanan, Zhou Xiaoyan, Jiang Wan, et al. Speech
                 Resources and Evaluation, 2008, 42(4): 335–359.   emotion recognition algorithm based on 3D and 1D
             [26] 戴妍妍, 金赟, 马勇, 等. 基于高效通道注意力机制的语音情                  multi-feature fusion[J]. Technical Acoustics, 2021, 40(4):
                 感识别方法 [J]. 信号处理, 2021, 37(10): 1835–1842.         496–502.
                 Dai Yanyan, Jin Yun, Ma Yong, et al. Speech emotion  [32] Wen X C, Liu K H, Zhang W M, et al. The application
                 recognition based on efficient channel attention[J]. Jour-  of capsule neural network based CNN for speech emo-
                 nal of Signal Processing, 2021, 37(10): 1835–1842.  tion recognition[C]. International Conference on Pattern
             [27] Schuller B W, Batliner A, Bergler C, et al. Computa-  Recognitio, 2021.
                 tional paralinguistics challenge: elderly emotion, breath-  [33] Xia X, Jiang D, Sahli H. Learning salient segments for
                 ing & masks[C]. Interspeech, 2020.                speech emotion recognition using attentive temporal pool-
             [28] Satt A, Rozenberg S, Hoory R. Efficient emotion recogni-  ing[J]. IEEE Access, 2020, 8: 151740–151752.
                 tion from speech using deep learning on spectrograms[C].  [34] Tang D, Kuppens P, Geurts L, et al. Adieu recurrence?
                 Interspeech, 2017.                                End-to-end speech emotion recognition using a context
             [29] Ma X, Wu Z, Jia J, et al. Speech emotion recognition  stacking dilated convolutional network[C]. European Sig-
                 with emotion-pair based framework considering emotion  nal Processing Conference, 2021.
                 distribution information in dimensional emotion space[C].
   169   170   171   172   173   174   175   176