Page 157 - 《应用声学》2022年第6期
P. 157
第 41 卷 第 6 期 惠辉等: 高频宽带嵌套式复合材料换能器 1003
-175
4ࡏࢦݓ [3] 唐平, 鲜晓军, 刘振华, 等. 高频球面宽波束水声换能器研
4.1 mm 究 [J]. 压电与声光, 2019, 41(5): 647–649.
-180
4.8 mm Tang Ping, Xian Xiaojun, Liu Zhenhua, et al. Study on
5.2 mm
-185 high frequency spherical underwater transducer[J]. Piezo-
5.7 mm
electric and Acoustooptic, 2019, 41(5): 647–649.
M x /dB -195 [4] Elmash I C, Koymen H. A wideband and a wide-beam-
-190
width acoustic transducer design for underwater acoustic
communications[C]. Oceans 2006-Asia Pacific, Singapore,
-200 2007: 1–5.
[5] 张庆国, 黄其培, 李兴武, 等. 宽带组合式水声换能器设计研
-205
制及应用 [J]. 压电与声光, 2020, 42(2): 223–229.
Zhang Qingguo, Huang Qipei, Li Xingwu, et al. De-
-210
200 400
sign, development and application of wideband underwa-
ᮠဋ f/kHz ter acoustic transducer with combination mode[J]. Piezo-
electric and Acoustooptic, 2020, 42(2): 223–229.
图 14 接收灵敏度曲线
[6] Zhi T, Yongrae R, Wonho K. Optimal design of an un-
Fig. 14 Receiving sensitivity curve derwater piezocomposite ring transducer[C]. Ultrasonics
Symposium, 2008 IEEE, 2008: 1405–1408.
表 1 换能器测试结果 [7] 陈俊波, 王月兵, 仲林建. 1–3 型压电复合材料和普通 PZT 换
Table 1 Transducer test results 能器性能对比分析 [J]. 声学与电子工程, 2007(3): 25–27.
Chen Junbo, Wang Yuebing, Zhong Linjian. Performance
测试 发送电压 −3 dB 接收灵 −3 dB comparison and analysis of 1–3 piezoelectric composite
对象 响应/dB 带宽/kHz 敏度/dB 带宽/kHz and ordinary PZT transducer[J]. Acoustic and Electronic
5.7 mm 174.7 40 −177.4 40 Engineering, 2007(3): 25–27.
[8] 李莉. 1–3 系压电复合材料及水声换能器研究 [D]. 北京: 北京
5.2 mm 176.5 40 −180.3 50
邮电大学, 2008.
4.8 mm 180.2 50 −182.2 50
[9] 王钢. 高频圆柱水声换能器的研制 [D]. 北京: 北京信息科技
4.1 mm 183.5 80 −189.0 70 大学, 2010.
4 层嵌套 188.5 130 −186.8 90 [10] Bian J, Wang Y, Liu Z, et al. Ultra-wideband underwater
acoustic transducer with a gradient impedance matching
layer[J]. Applied Acoustics, 2021, 175(6): 107789.
5 结论
[11] Wang H, Wang L. High frequency wideband underwater
acoustic transducer for ring shaped composite material[J].
通过理论分析和 ANSYS 有限元分析,设计了 Chinese Journal of Acoustics, 2017, 36(2): 260–270.
嵌套式复合材料敏感元件,采用切割填充法制备了 [12] 栾桂冬, 张金铎, 王仁乾. 压电换能器和换能器阵 [M]. 北京:
北京大学出版社, 2005: 42–43.
不同厚度的 1-3 型压电复合材料敏感元件,并将不 [13] 田华, 付志强. 夹心式压电陶瓷超声换能器厚度振动特性 [J].
同厚度的敏感元件沿轴向嵌套,实现了嵌套式的复 陕西师范大学学报 (自然科学版), 2012, 40(4): 34–38.
Tian Hua, Fu Zhiqiang. Study on the sandwich piezo-
合材料结构,最终制作了一种新型高频宽带嵌套式 electric ceramic ultrasonic transducer in thickness vibra-
复合材料换能器。该换能器的性能测试结果表明, tion[J]. Journal of Shanxi Normal University (Natural Sci-
ence Edition), 2012, 40(4): 34–38.
该新型结构换能器在水下可实现良好的模态的组 [14] 林书玉. 径向振动压电陶瓷薄圆盘振子的机电等效电路与
合,并可以大幅度拓展换能器的工作带宽。该型换 共振频率研究 [J]. 陕西师范大学学报 (自然科学版), 2006,
34(1): 27–31.
能器可应用于水下声定位与水下成像的声呐系统,
Lin Shuyu. Analysis on the resonance frequency of a thin
有效提高声呐系统的整体性能。 piezoelectric ceramic disk in radial vibrator[J]. Journal
of Shanxi Normal University (Natural Science Edition),
参 考 文 献 2006, 34(1): 27–31.
[15] Newnham R E, Skinner D P, Cross L E. Connectivity
[1] 胡明, 朱辉庆. 中高频水声换能器发展综述 [J]. 声学与电子工 and piezoelectric-pyroelectric composites[J]. Materials Re-
程, 2014(4): 40–44. search Bulletin, 1978, 13: 525–536.
Hu Ming, Zhu Huiqing. Overview of the development of [16] Smith W A, Auld B A. Modeling 1–3 composite piezo-
medium and high frequency underwater acoustic trans- electrics: thickness-mode oscillations[J]. IEEE Transac-
ducers[J]. Acoustics and Electronic Engineering, 2014 (4): tions on Ultrasonics Ferroelectrics and Frequency Control,
40–44. 1991, 38(1): 40–47.
[2] 刘慧生, 莫喜平. 纵向换能器宽带研究设计进展 [J]. 声学技 [17] 张凯, 蓝宇, 李琪. 1–3 型压电复合材料宽带水声换能器研
术, 2014, 33(6): 564–571. 究 [J]. 声学学报, 2011, 36(6): 631–637.
Liu Huisheng, Mo Xiping. Research and design progress Zhang Kai, Lan Yu, Li Qi. Research on 1–3 piezoelec-
of broadband longitudinal transducer[J]. Technical Acous- tric composite broad-band underwater acoustic transduc-
tics, 2014, 33(6): 564–571. ers[J]. Acta Acustica, 2011, 36(6): 631–637.