Page 157 - 《应用声学》2022年第6期
P. 157

第 41 卷 第 6 期                  惠辉等: 高频宽带嵌套式复合材料换能器                                          1003


                  -175
                                                 4ࡏࢦݓ            [3] 唐平, 鲜晓军, 刘振华, 等. 高频球面宽波束水声换能器研
                                                 4.1 mm            究 [J]. 压电与声光, 2019, 41(5): 647–649.
                  -180
                                                 4.8 mm            Tang Ping, Xian Xiaojun, Liu Zhenhua, et al. Study on
                                                 5.2 mm
                  -185                                             high frequency spherical underwater transducer[J]. Piezo-
                                                  5.7 mm
                                                                   electric and Acoustooptic, 2019, 41(5): 647–649.
                   M x /dB  -195                                 [4] Elmash I C, Koymen H. A wideband and a wide-beam-
                  -190
                                                                   width acoustic transducer design for underwater acoustic
                                                                   communications[C]. Oceans 2006-Asia Pacific, Singapore,
                  -200                                             2007: 1–5.
                                                                 [5] 张庆国, 黄其培, 李兴武, 等. 宽带组合式水声换能器设计研
                  -205
                                                                   制及应用 [J]. 压电与声光, 2020, 42(2): 223–229.
                                                                   Zhang Qingguo, Huang Qipei, Li Xingwu, et al.  De-
                  -210
                          200             400
                                                                   sign, development and application of wideband underwa-
                                   ᮠဋ f/kHz                        ter acoustic transducer with combination mode[J]. Piezo-
                                                                   electric and Acoustooptic, 2020, 42(2): 223–229.
                          图 14  接收灵敏度曲线
                                                                 [6] Zhi T, Yongrae R, Wonho K. Optimal design of an un-
                     Fig. 14 Receiving sensitivity curve           derwater piezocomposite ring transducer[C]. Ultrasonics
                                                                   Symposium, 2008 IEEE, 2008: 1405–1408.
                          表 1   换能器测试结果                          [7] 陈俊波, 王月兵, 仲林建. 1–3 型压电复合材料和普通 PZT 换
                    Table 1 Transducer test results                能器性能对比分析 [J]. 声学与电子工程, 2007(3): 25–27.
                                                                   Chen Junbo, Wang Yuebing, Zhong Linjian. Performance
                  测试    发送电压     −3 dB   接收灵     −3 dB             comparison and analysis of 1–3 piezoelectric composite
                  对象    响应/dB   带宽/kHz  敏度/dB   带宽/kHz             and ordinary PZT transducer[J]. Acoustic and Electronic
                5.7 mm   174.7    40     −177.4    40              Engineering, 2007(3): 25–27.
                                                                 [8] 李莉. 1–3 系压电复合材料及水声换能器研究 [D]. 北京: 北京
                5.2 mm   176.5    40     −180.3    50
                                                                   邮电大学, 2008.
                4.8 mm   180.2    50     −182.2    50
                                                                 [9] 王钢. 高频圆柱水声换能器的研制 [D]. 北京: 北京信息科技
                4.1 mm   183.5    80     −189.0    70              大学, 2010.
                4 层嵌套    188.5    130    −186.8    90           [10] Bian J, Wang Y, Liu Z, et al. Ultra-wideband underwater
                                                                   acoustic transducer with a gradient impedance matching
                                                                   layer[J]. Applied Acoustics, 2021, 175(6): 107789.
             5 结论
                                                                [11] Wang H, Wang L. High frequency wideband underwater
                                                                   acoustic transducer for ring shaped composite material[J].
                 通过理论分析和 ANSYS 有限元分析,设计了                           Chinese Journal of Acoustics, 2017, 36(2): 260–270.
             嵌套式复合材料敏感元件,采用切割填充法制备了                             [12] 栾桂冬, 张金铎, 王仁乾. 压电换能器和换能器阵 [M]. 北京:
                                                                   北京大学出版社, 2005: 42–43.
             不同厚度的 1-3 型压电复合材料敏感元件,并将不                          [13] 田华, 付志强. 夹心式压电陶瓷超声换能器厚度振动特性 [J].
             同厚度的敏感元件沿轴向嵌套,实现了嵌套式的复                                陕西师范大学学报 (自然科学版), 2012, 40(4): 34–38.
                                                                   Tian Hua, Fu Zhiqiang. Study on the sandwich piezo-
             合材料结构,最终制作了一种新型高频宽带嵌套式                                electric ceramic ultrasonic transducer in thickness vibra-
             复合材料换能器。该换能器的性能测试结果表明,                                tion[J]. Journal of Shanxi Normal University (Natural Sci-
                                                                   ence Edition), 2012, 40(4): 34–38.
             该新型结构换能器在水下可实现良好的模态的组                              [14] 林书玉. 径向振动压电陶瓷薄圆盘振子的机电等效电路与
             合,并可以大幅度拓展换能器的工作带宽。该型换                                共振频率研究 [J]. 陕西师范大学学报 (自然科学版), 2006,
                                                                   34(1): 27–31.
             能器可应用于水下声定位与水下成像的声呐系统,
                                                                   Lin Shuyu. Analysis on the resonance frequency of a thin
             有效提高声呐系统的整体性能。                                        piezoelectric ceramic disk in radial vibrator[J]. Journal
                                                                   of Shanxi Normal University (Natural Science Edition),
                            参 考     文   献                          2006, 34(1): 27–31.
                                                                [15] Newnham R E, Skinner D P, Cross L E. Connectivity
              [1] 胡明, 朱辉庆. 中高频水声换能器发展综述 [J]. 声学与电子工                and piezoelectric-pyroelectric composites[J]. Materials Re-
                 程, 2014(4): 40–44.                                search Bulletin, 1978, 13: 525–536.
                 Hu Ming, Zhu Huiqing. Overview of the development of  [16] Smith W A, Auld B A. Modeling 1–3 composite piezo-
                 medium and high frequency underwater acoustic trans-  electrics: thickness-mode oscillations[J]. IEEE Transac-
                 ducers[J]. Acoustics and Electronic Engineering, 2014 (4):  tions on Ultrasonics Ferroelectrics and Frequency Control,
                 40–44.                                            1991, 38(1): 40–47.
              [2] 刘慧生, 莫喜平. 纵向换能器宽带研究设计进展 [J]. 声学技              [17] 张凯, 蓝宇, 李琪. 1–3 型压电复合材料宽带水声换能器研
                 术, 2014, 33(6): 564–571.                          究 [J]. 声学学报, 2011, 36(6): 631–637.
                 Liu Huisheng, Mo Xiping. Research and design progress  Zhang Kai, Lan Yu, Li Qi. Research on 1–3 piezoelec-
                 of broadband longitudinal transducer[J]. Technical Acous-  tric composite broad-band underwater acoustic transduc-
                 tics, 2014, 33(6): 564–571.                       ers[J]. Acta Acustica, 2011, 36(6): 631–637.
   152   153   154   155   156   157   158   159   160   161   162