Page 163 - 《应用声学》2022年第6期
P. 163
第 41 卷 第 6 期 葛丽丽等: 经典局域共振型水声超材料的吸隔声性能研究 1009
Zhang Yanni, Chen Ke’an, Hao Xiaying, et al. A review
3 结论 of underwater acoustic metamaterials[J]. Chinese Science
Bulletin, 202, 65(15): 1396–1410.
本文通过多层平行介质平面波理论建立局域 [7] Wen J, Zhao H, Lyu L, et al. Effects of locally resonant
共振型水声超材料,得到以下主要结论: modes on underwater sound absorption in viscoelastic ma-
terials[J]. The Journal of the Acoustical Society of Amer-
(1) 通过有限元仿真计算软件仿真结果分析,
ica, 2011, 130(3): 10.1121/1.3621074.
发现水声超材料结构内部的位移场和钢背衬都会 [8] Zhong J, Wen J, Zhao H, et al. Effects of core position of
对吸声性能产生影响,位移场通过位移幅度影响吸 locally resonant scatterers on low-frequency acoustic ab-
sorption in viscoelastic panel[J]. Chinese Physics B, 2015,
隔声性能,钢背衬则通过整体共振影响吸隔声性能。
24(8): 084301.
(2) 研究发现钢背衬和超材料作为一个整体振 [9] Meng H, Wen J, Zhao H, et al. Optimization of locally
动,比单独的超材料具有更明显的位移,表现出明显 resonant acoustic metamaterials on underwater sound ab-
sorption characteristics[J]. Journal of Sound and Vibra-
的刚体共振,并且水声超材料在是否添加钢背衬两
tion, 2012, 331(20): 4406–4416.
种情况下模型都遵循整体共振模式。 [10] Zhao H, Wen J, Yang H, et al. Backing effects on the
underwater acoustic absorption of a viscoelastic slab with
参 考 文 献 locally resonant scatterers[J]. Applied Acoustics, 2014, 76:
48–51.
[1] 曹培政, 张宇, 刁顺, 等. 水下声学超材料研究 [J]. 中国材料
[11] Zhang Y, Pan J, Chen K, et al. Subwavelength and quasi-
进展, 2021, 40(1): 7–21.
perfect underwater sound absorber for multiple and broad
Cao Peizheng, Zhang Yu, Diao Shun, et al. Research on
frequency bands[J]. The Journal of the Acoustical Society
underwater acoustic metamaterials[J]. Journal of Applied
of America, 2018, 144(2): 648–659.
Acoustics, 2021, 40(1): 7–21.
[12] Zhang Y Pan J Chen K, et al Ultrathin quasi-perfect
[2] 朱一凡, 梁彬, 程建春. 广义斯奈尔定律与声超表面 [J]. 应用
absorber for low-frequency and broadband underwater
声学, 2018, 37(1): 53–62.
sound[J]. Inter-Noise and Noise-Con Congress and Con-
Zhu Yifan, Liang Bin, Cheng Jianchun. The generalized
ference Proceedings, 2019, 259(9): 106–732.
Snell’s law and acoustic metasurfaces[J]. Journal of Ap-
[13] Zhang Y, Pan J. Enhancing acoustic signal response and
plied Acoustics, 2018, 37(1): 53–62.
absorption of an underwater coated plate by embedding
[3] 张忠刚, 朱浩宇, 罗剑, 等. 吸声型薄膜声学超材料低频宽带
periodical inhomogeneities[J]. The Journal of the Acousti-
吸声性能研究 [J]. 应用声学, 2019, 38(5): 869–875.
cal Society of America, 2017, 142(6): 10.1121/1.5017604.
Zhang Zhonggang, Zhu Haoyu, Luo Jian, et al. The in-
[14] 张宪旭, 刘怡然, 李丽君. 基于 Helmholtz 共振腔阵列的声学
vestigation on low-frequency broadband acoustic absorp-
超材料研究 [J]. 工程设计学报, 2020, 27(4): 441–447.
tion performance of membrane sound-absorbing meta-
Zhang Xianxu, Liu Yiran, Li Lijun. Research on acous-
material[J]. Journal of Applied Acoustics, 2019, 38(5):
tic metamaterial based on Helmholtz resonant cavity
869–875.
array[J]. Chinese Journal of Engineering Design, 2020,
[4] 陈龙虎. 声学超材料对低频噪声的消声特性 [J]. 应用声学,
27(4): 441–447.
2020, 39(3): 438–444.
[15] Yang H, Li Y, Zhao H, et al. Acoustic anechoic layers
Chen Longhu. The muffling characteristics of acoustic
with singly periodic array of scatterers: computational
metamaterials to low frequency noise[J]. Journal of Ap-
methods, absorption mechanisms, and optimal design[J].
plied Acoustics, 2020, 39(3): 438–444.
Chinese Physics B, 2014, 23(10): 104304.
[5] 罗英勤, 楼京俊, 张焱冰, 等. 含周期性空腔结构吸声机理的
[16] 吴健, 白晓春, 肖勇, 等. 一种多频局域共振型声子晶体板的
研究 [J]. 应用声学, 2021, 40(4): 525–531.
低频带隙与减振特性 [J]. 物理学报, 2016, 65(6): 209–219.
Luo Yingqin, Lou Jingjun, Zhang Yanbing, et al.
Wu Jian, Bai Xiaochun, Xiao Yong, et al. Low frequency
Sound-absorption mechanism of structures with periodic
band gaps and vibration reduction properties of a multi-
cavities[J]. Journal of Applied Acoustics, 2021, 40(4):
frequency locally resonant phononic plate[J]. Acta Physica
525–531.
Sinica, 2016, 65(6): 209–219.
[6] 张燕妮, 陈克安, 郝夏影, 等. 水声超材料研究进展 [J]. 科学
通报, 2020, 65(15): 1396–1410.