Page 163 - 《应用声学》2022年第6期
P. 163

第 41 卷 第 6 期            葛丽丽等: 经典局域共振型水声超材料的吸隔声性能研究                                         1009


                                                                   Zhang Yanni, Chen Ke’an, Hao Xiaying, et al. A review
             3 结论                                                  of underwater acoustic metamaterials[J]. Chinese Science
                                                                   Bulletin, 202, 65(15): 1396–1410.
                 本文通过多层平行介质平面波理论建立局域                             [7] Wen J, Zhao H, Lyu L, et al. Effects of locally resonant
             共振型水声超材料,得到以下主要结论:                                    modes on underwater sound absorption in viscoelastic ma-
                                                                   terials[J]. The Journal of the Acoustical Society of Amer-
                 (1) 通过有限元仿真计算软件仿真结果分析,
                                                                   ica, 2011, 130(3): 10.1121/1.3621074.
             发现水声超材料结构内部的位移场和钢背衬都会                               [8] Zhong J, Wen J, Zhao H, et al. Effects of core position of
             对吸声性能产生影响,位移场通过位移幅度影响吸                                locally resonant scatterers on low-frequency acoustic ab-
                                                                   sorption in viscoelastic panel[J]. Chinese Physics B, 2015,
             隔声性能,钢背衬则通过整体共振影响吸隔声性能。
                                                                   24(8): 084301.
                 (2) 研究发现钢背衬和超材料作为一个整体振                          [9] Meng H, Wen J, Zhao H, et al. Optimization of locally
             动,比单独的超材料具有更明显的位移,表现出明显                               resonant acoustic metamaterials on underwater sound ab-
                                                                   sorption characteristics[J]. Journal of Sound and Vibra-
             的刚体共振,并且水声超材料在是否添加钢背衬两
                                                                   tion, 2012, 331(20): 4406–4416.
             种情况下模型都遵循整体共振模式。                                   [10] Zhao H, Wen J, Yang H, et al. Backing effects on the
                                                                   underwater acoustic absorption of a viscoelastic slab with
                            参 考     文   献                          locally resonant scatterers[J]. Applied Acoustics, 2014, 76:
                                                                   48–51.
              [1] 曹培政, 张宇, 刁顺, 等. 水下声学超材料研究 [J]. 中国材料
                                                                [11] Zhang Y, Pan J, Chen K, et al. Subwavelength and quasi-
                 进展, 2021, 40(1): 7–21.
                                                                   perfect underwater sound absorber for multiple and broad
                 Cao Peizheng, Zhang Yu, Diao Shun, et al. Research on
                                                                   frequency bands[J]. The Journal of the Acoustical Society
                 underwater acoustic metamaterials[J]. Journal of Applied
                                                                   of America, 2018, 144(2): 648–659.
                 Acoustics, 2021, 40(1): 7–21.
                                                                [12] Zhang Y Pan J Chen K, et al Ultrathin quasi-perfect
              [2] 朱一凡, 梁彬, 程建春. 广义斯奈尔定律与声超表面 [J]. 应用
                                                                   absorber for low-frequency and broadband underwater
                 声学, 2018, 37(1): 53–62.
                                                                   sound[J]. Inter-Noise and Noise-Con Congress and Con-
                 Zhu Yifan, Liang Bin, Cheng Jianchun. The generalized
                                                                   ference Proceedings, 2019, 259(9): 106–732.
                 Snell’s law and acoustic metasurfaces[J]. Journal of Ap-
                                                                [13] Zhang Y, Pan J. Enhancing acoustic signal response and
                 plied Acoustics, 2018, 37(1): 53–62.
                                                                   absorption of an underwater coated plate by embedding
              [3] 张忠刚, 朱浩宇, 罗剑, 等. 吸声型薄膜声学超材料低频宽带
                                                                   periodical inhomogeneities[J]. The Journal of the Acousti-
                 吸声性能研究 [J]. 应用声学, 2019, 38(5): 869–875.
                                                                   cal Society of America, 2017, 142(6): 10.1121/1.5017604.
                 Zhang Zhonggang, Zhu Haoyu, Luo Jian, et al. The in-
                                                                [14] 张宪旭, 刘怡然, 李丽君. 基于 Helmholtz 共振腔阵列的声学
                 vestigation on low-frequency broadband acoustic absorp-
                                                                   超材料研究 [J]. 工程设计学报, 2020, 27(4): 441–447.
                 tion performance of membrane sound-absorbing meta-
                                                                   Zhang Xianxu, Liu Yiran, Li Lijun. Research on acous-
                 material[J]. Journal of Applied Acoustics, 2019, 38(5):
                                                                   tic metamaterial based on Helmholtz resonant cavity
                 869–875.
                                                                   array[J]. Chinese Journal of Engineering Design, 2020,
              [4] 陈龙虎. 声学超材料对低频噪声的消声特性 [J]. 应用声学,
                                                                   27(4): 441–447.
                 2020, 39(3): 438–444.
                                                                [15] Yang H, Li Y, Zhao H, et al. Acoustic anechoic layers
                 Chen Longhu. The muffling characteristics of acoustic
                                                                   with singly periodic array of scatterers: computational
                 metamaterials to low frequency noise[J]. Journal of Ap-
                                                                   methods, absorption mechanisms, and optimal design[J].
                 plied Acoustics, 2020, 39(3): 438–444.
                                                                   Chinese Physics B, 2014, 23(10): 104304.
              [5] 罗英勤, 楼京俊, 张焱冰, 等. 含周期性空腔结构吸声机理的
                                                                [16] 吴健, 白晓春, 肖勇, 等. 一种多频局域共振型声子晶体板的
                 研究 [J]. 应用声学, 2021, 40(4): 525–531.
                                                                   低频带隙与减振特性 [J]. 物理学报, 2016, 65(6): 209–219.
                 Luo Yingqin, Lou Jingjun, Zhang Yanbing, et al.
                                                                   Wu Jian, Bai Xiaochun, Xiao Yong, et al. Low frequency
                 Sound-absorption mechanism of structures with periodic
                                                                   band gaps and vibration reduction properties of a multi-
                 cavities[J]. Journal of Applied Acoustics, 2021, 40(4):
                                                                   frequency locally resonant phononic plate[J]. Acta Physica
                 525–531.
                                                                   Sinica, 2016, 65(6): 209–219.
              [6] 张燕妮, 陈克安, 郝夏影, 等. 水声超材料研究进展 [J]. 科学
                 通报, 2020, 65(15): 1396–1410.
   158   159   160   161   162   163   164   165   166   167   168