Page 37 - 《应用声学》2022年第6期
P. 37

第 41 卷 第 6 期              王亚琴等: 薄膜型声学超材料的结构设计与隔声特性                                          883


                 Physics A-Materials Science & Processing, 2014, 114(3):  2017, 37(1): 163–166.
                 985–990.                                       [13] 张佳龙, 姚宏, 杜军, 等. 薄膜型声学超材料板结构隔声特性
              [5] Lu K, Wu J H, Guan D, et al.  A lightweight low-  分析 [J]. 人工晶体学报, 2016, 45(10): 2549–2555.
                 frequency sound insulation membrane-type acoustic meta-  Zhang Jialong, Yao Hong, Du Jun, et al. Analysis of
                 material[J]. AIP Advances, 2016, 6(2): 5116–5128.  the sound insulation properties of membrane-type acous-
              [6] Xing H Y, Chao Y, Zhao X N. A multi-layer low-frequency  tic metamaterial plate[J]. Journal of Synthetic Crystals,
                 broadband membrane-type acoustic metamaterial sound  2016, 45(10): 2549–2555.
                 isolator[C]. Communications, Signal Processing, and Sys-
                                                                [14] 刘忠远, 林天然, 官源林, 等. 通孔薄膜声学超材料声阻抗分析
                 tems, 2017, 463: 1916–1927.
                                                                   及隔声带宽优化 [J]. 噪声与振动控制, 2020, 40(1): 208–211,
              [7] 陈琳, 吴卫国, 周榕. 一种基于局域共振的低频超宽带隙瓣状
                                                                   244.
                 声学超材料 [J]. 声学技术, 2016, 35(3): 222–227.
                                                                   Liu Zhongyuan, Lin Tianran, Guan Yuanlin, et al.
                 Chen Lin, Wu Weiguo, Zhou Rong. A petal-like acous-
                                                                   Impedance analysis and sound insulation bandwidth op-
                 tic metamaterial structure based on local resonance with
                                                                   timization of a perforated acoustic metamaterial[J]. Noise
                 ultra-wide sonic band gap in low frequency range[J]. Tech-
                                                                   and Vibration Control, 2020, 40(1): 208–211, 244.
                 nical Acoustics, 2016, 35(3): 222–227.
                                                                [15] Lu Z B, Yu X, Lau S K, et al. Membrane-type acoustic
              [8] Ma F Y, Wu J H, Huang M, et al.  A purely flexi-
                                                                   metamaterial with eccentric masses for broadband sound
                 ble lightweight membrane-type acoustic metamaterial[J].
                                                                   isolation[J]. Applied Acoustics, 2020, 157(4): 107003.
                 Journal of Physics D-Applied Physics, 2015, 48(17):
                                                                [16] 陈龙虎. 声学超材料对低频噪声的消声特性 [J]. 应用声学,
                 175105.
                                                                   2020, 39(3): 438–444.
              [9] Nguyen H, Wu Q, Chen J J, et al. A broadband acoustic
                                                                   Chen Longhu. The muffling characteristics of acoustic
                 panel based on double-layer membrane-type metamateri-
                                                                   metamaterials to low frequency noise[J]. Journal of Ap-
                 als[J]. Applied Physics Letters, 2021, 118(18): 184101.
                                                                   plied Acoustics, 2020, 39(3): 438–444.
             [10] Langfeldt F, Riecken J, Gleine W, et al. A membrane-
                 type acoustic metamaterial with adjustable acoustic prop-  [17] 周国建, 吴九汇, 路宽, 等. 多态反共振协同型薄膜声学超材
                 erties[J]. Journal of Sound and Vibration, 2016, 373: 1–18.  料低频隔声性能 [J]. 西安交通大学学报, 2020, 54(1): 64–74.
             [11] 苏继龙, 刘明财. 结构参数对薄膜型隔声超材料带隙移位特性                    Zhou Guojian,  Wu Jiuhui,  Lu Kuan,  et al.  A
                 的影响 [J]. 材料导报 2019, 33(8): 1298–1301.             study on low-frequency sound insulation performance of
                 Su Jilong, Liu Mingcai. Effect of structural parameters  membrane-type acoustic metamaterials with multi-state
                 on the performance of band gap movement of membrane-  anti-resonance synergy[J]. Journal of Xi’an Jiaotong Uni-
                 type acoustic metamaterials[J]. Materials Reports, 2019,  versity, 2020, 54(1): 64–74.
                 33(8): 1298–1301.                              [18] 王旭芳, 杜建科, 郝耀东, 等. 汽车防火墙总成隔声性能不确
             [12] 叶超, 苏继龙. 薄膜型声学超材料微结构参数对其隔声性能的                    定性分析与优化 [J]. 汽车技术, 2020, 542(11): 38–42.
                 影响 [J]. 噪声与振动控制, 2017, 37(1): 163–166.            Wang Xufang, Du Jianke, Hao Yaodong, et al. Analysis
                 Ye Chao, Su Jilong. Influence of micro structural param-  and optimization of the uncertainty of sound insulation
                 eters on sound insulation performance of membrane-type  performance of automobile firewall assembly[J]. Automo-
                 acoustic metamaterials[J]. Noise and Vibration Control,  bile Technology, 2020, 542(11): 38–42.
   32   33   34   35   36   37   38   39   40   41   42