Page 37 - 《应用声学》2022年第6期
P. 37
第 41 卷 第 6 期 王亚琴等: 薄膜型声学超材料的结构设计与隔声特性 883
Physics A-Materials Science & Processing, 2014, 114(3): 2017, 37(1): 163–166.
985–990. [13] 张佳龙, 姚宏, 杜军, 等. 薄膜型声学超材料板结构隔声特性
[5] Lu K, Wu J H, Guan D, et al. A lightweight low- 分析 [J]. 人工晶体学报, 2016, 45(10): 2549–2555.
frequency sound insulation membrane-type acoustic meta- Zhang Jialong, Yao Hong, Du Jun, et al. Analysis of
material[J]. AIP Advances, 2016, 6(2): 5116–5128. the sound insulation properties of membrane-type acous-
[6] Xing H Y, Chao Y, Zhao X N. A multi-layer low-frequency tic metamaterial plate[J]. Journal of Synthetic Crystals,
broadband membrane-type acoustic metamaterial sound 2016, 45(10): 2549–2555.
isolator[C]. Communications, Signal Processing, and Sys-
[14] 刘忠远, 林天然, 官源林, 等. 通孔薄膜声学超材料声阻抗分析
tems, 2017, 463: 1916–1927.
及隔声带宽优化 [J]. 噪声与振动控制, 2020, 40(1): 208–211,
[7] 陈琳, 吴卫国, 周榕. 一种基于局域共振的低频超宽带隙瓣状
244.
声学超材料 [J]. 声学技术, 2016, 35(3): 222–227.
Liu Zhongyuan, Lin Tianran, Guan Yuanlin, et al.
Chen Lin, Wu Weiguo, Zhou Rong. A petal-like acous-
Impedance analysis and sound insulation bandwidth op-
tic metamaterial structure based on local resonance with
timization of a perforated acoustic metamaterial[J]. Noise
ultra-wide sonic band gap in low frequency range[J]. Tech-
and Vibration Control, 2020, 40(1): 208–211, 244.
nical Acoustics, 2016, 35(3): 222–227.
[15] Lu Z B, Yu X, Lau S K, et al. Membrane-type acoustic
[8] Ma F Y, Wu J H, Huang M, et al. A purely flexi-
metamaterial with eccentric masses for broadband sound
ble lightweight membrane-type acoustic metamaterial[J].
isolation[J]. Applied Acoustics, 2020, 157(4): 107003.
Journal of Physics D-Applied Physics, 2015, 48(17):
[16] 陈龙虎. 声学超材料对低频噪声的消声特性 [J]. 应用声学,
175105.
2020, 39(3): 438–444.
[9] Nguyen H, Wu Q, Chen J J, et al. A broadband acoustic
Chen Longhu. The muffling characteristics of acoustic
panel based on double-layer membrane-type metamateri-
metamaterials to low frequency noise[J]. Journal of Ap-
als[J]. Applied Physics Letters, 2021, 118(18): 184101.
plied Acoustics, 2020, 39(3): 438–444.
[10] Langfeldt F, Riecken J, Gleine W, et al. A membrane-
type acoustic metamaterial with adjustable acoustic prop- [17] 周国建, 吴九汇, 路宽, 等. 多态反共振协同型薄膜声学超材
erties[J]. Journal of Sound and Vibration, 2016, 373: 1–18. 料低频隔声性能 [J]. 西安交通大学学报, 2020, 54(1): 64–74.
[11] 苏继龙, 刘明财. 结构参数对薄膜型隔声超材料带隙移位特性 Zhou Guojian, Wu Jiuhui, Lu Kuan, et al. A
的影响 [J]. 材料导报 2019, 33(8): 1298–1301. study on low-frequency sound insulation performance of
Su Jilong, Liu Mingcai. Effect of structural parameters membrane-type acoustic metamaterials with multi-state
on the performance of band gap movement of membrane- anti-resonance synergy[J]. Journal of Xi’an Jiaotong Uni-
type acoustic metamaterials[J]. Materials Reports, 2019, versity, 2020, 54(1): 64–74.
33(8): 1298–1301. [18] 王旭芳, 杜建科, 郝耀东, 等. 汽车防火墙总成隔声性能不确
[12] 叶超, 苏继龙. 薄膜型声学超材料微结构参数对其隔声性能的 定性分析与优化 [J]. 汽车技术, 2020, 542(11): 38–42.
影响 [J]. 噪声与振动控制, 2017, 37(1): 163–166. Wang Xufang, Du Jianke, Hao Yaodong, et al. Analysis
Ye Chao, Su Jilong. Influence of micro structural param- and optimization of the uncertainty of sound insulation
eters on sound insulation performance of membrane-type performance of automobile firewall assembly[J]. Automo-
acoustic metamaterials[J]. Noise and Vibration Control, bile Technology, 2020, 542(11): 38–42.