Page 217 - 《应用声学》2023年第2期
P. 217
第 42 卷 第 2 期 张默涵等: 经颅超声刺激人脑海马的数值仿真研究 405
Liu Zhihua, Qian Xuehua, Zhou Tingyong, et al. Mea- 1023–1033.
surement of hippcompal morphology in human brain by [27] Pinton G, Aubry J F, Fink M, et al. Effects of nonlinear
MRI[J]. Journal of Third Military Medical University, ultrasound propagation on high intensity brain therapy[J]
2012, 34(16): 1636–1641. Medical Physics, 2011, 38(3): 1207–1216.
[15] Nahirnyak V, Mast T D, Holland C K. Ultrasound- [28] Zhang Y, Zhang M, Ling Z, et al. The influence of tran-
induced thermal elevation in clotted blood and cranial scranial magnetoacoustic stimulation parameters on the
bone[J]. Ultrasound in Medicine and Biology, 2007, 33(8): basal ganglia-thalamus neural network in Parkinson’s dis-
1285–1295. ease[J]. Frontiers in Neuroscience, 2021, 15: 1389.
[16] Qiu W, Bouakaz A, Konofagou E E, et al. Ultrasound [29] 赵旺兄, 乔清理, 王丹. 海马 CA3 区联想记忆功能的神经
for the brain: a review of physical and engineering prin- 网络建模 [J]. 中国组织工程研究与临床康复, 2010, 14(17):
ciples, and clinical applications[J]. IEEE Transactions on 3113–3116.
Ultrasonics Ferroelectrics and Frequency Control, 2020, Zhao Wangxiong, Qiao Qingli, Wang Dan. Neural net-
PP(99): 1–1. work modeling of hippocampal CA3 associative memory
[17] Westervelt, Peter J. Parametric acoustic array[J]. The functions[J]. Chinese Journal of Tissue Engineering Re-
Journal of the Acoustical Society of America, 1963, 35(4):
search, 2010, 14(17): 3113–3116.
535–537.
[30] Thomas J L, Fink M A. Ultrasonic beam focusing through
[18] Ding X, Wang Y, Zhang Q, et al. Modulation of transcra-
tissue inhomogeneities with a time reversal mirror: appli-
nial focusing thermal deposition in nonlinear HIFU brain
cation to transskull therapy[J]. Ultrasonics Ferroelectrics
surgery by numerical simulation[J]. Physcis in Medicine
and Frequency Control IEEE Transactions on, 1996,
and Biology, 2015, 60(10): 3975–3998.
43(6): 1122–1129.
[19] Aubry J F, Tanter M, Pernot M, et al. Experimental
[31] Chang S, Cao R, Zhang Y, et al. Treatable focal region
demonstration of noninvasive transskull adaptive focusing
modulated by double excitation signal superimposition to
based on prior computed tomography scans[J]. The Jour-
realize platform temperature distribution during transcra-
nal of the Acoustical Society of America, 2003, 113(1):
nial brain tumor therapy with high-intensity focused ul-
84–93.
trasound[J]. Chinese Physics B, 2018, 27(7): 078701.
[20] Pennes H H. Analysis of tissue and arterial blood temper-
[32] Clement G T, White J, Hynynen K. Investigation of a
atures in the resting human forearm[J]. Journal of Applied
large-area phased array for focused ultrasound surgery
Physiology, 1948, 1(2): 93–122.
through the skull[J] Physics in Medicine and Biology,
[21] Kim H, Chiu A, Lee S D, et al. Focused ultrasound-
2000, 45(4): 1071–1083.
mediated non-invasive brain stimulation: examination of
[33] 张艳秋, 张浩, 孙天宇, 等. 剪切波对 HIFU 经颅聚焦形成温度
sonication parameters[J]. Brain Stimulation, 2014, 7(5):
场影响的数值仿真研究 [J]. 应用声学, 2019, 38(3): 411–418.
748–756.
Zhang Yanqiu, Zhang Hao, Sun Tianyu, et al. Numerical
[22] 王会琴, 周晓青, 刘世坤, 等. 经颅磁声刺激与经颅超声刺激诱
simulation of the effect of shear wave on the temperature
发肌电运动阈值的对比研究 [J]. 医疗卫生装备, 2019, 40(1):
field of HIFU transcranial focusing [J]. Journal of Appiled
14–19.
Acoustics, 2019, 38(3): 411–418.
Wang Huiqin, Zhou Xiaoqing, Liu Shikun, et al. Compar-
[34] 王祥达, 苏畅, 林伟军, 等. 剪切波对时间反转调相的经颅聚
ative study of transcranial magnetic stimulation and tran-
焦超声的影响 [J]. 应用声学, 2018, 37(3): 315–323.
scranialultrasound stimulation on induced EMG motion
Wang Xiangda, Su Chang, Lin Weijun, et al. Influence
threshold[J]. Chinese Medical Equipment Journal, 2019,
40(1): 14–19. of shear waves on transcranial focused ultrasound using
[23] Izhikevich E M. Simple model of spiking neurons[J]. time-reversal-based phase modulations[J]. Journal of Ap-
IEEE Transactions on Neural Networks, 2003, 14(6): piled Acoustics, 2018, 37(3): 315–323.
1569–1572. [35] Blackmore J, Shrivastava S, Sallet J, et al. Ultra-
[24] Baniasad F, Makkiabadi B, Solgi R, et al. Transcranial sound neuromodulation: a review of results, mechanisms
focused ultrasound modulates electrical behavior of the and safety[J]. Ultrasound in Medicine and Biology, 2019,
neurons: design and implementation of a model[J]. Jour- 45(7): 1509–1536.
nal of Biomedical Physcis and Engineering, 2020, 10(1): [36] Juan E J, González R, Albors G, et al. Vagus nerve mod-
65–74. ulation using focused pulsed ultrasound: potential appli-
[25] Jian X, Morita N, Shi Q, et al. FDTD simulation of non- cations and preliminary observations in a rat[J]. Interna-
linear ultrasonic pulse propagation in ESWL[C]. 27th An- tional Journal of Imaging Systems and Technology, 2014,
nual International Conference of the IEEE Engineering in 24(1): 67–71.
Medicine and Biology Society, 2005, 2: 1806–1809. [37] Plaksin M, Kimmel E, Shoham S. Cell-type-selective ef-
[26] Okita K, Narumi R, Azuma T, et al. The role of nu- fects of intramembrane cavitation as a unifying theoreti-
merical simulation for the development of an advanced cal framework for ultrasonic neuromodulation[J]. eNeuro,
HIFU system[J]. Computational Mechanics, 2014, 54(4): 2016, 3(3): ENEURO0136–152016.