Page 217 - 《应用声学》2023年第2期
P. 217

第 42 卷 第 2 期              张默涵等: 经颅超声刺激人脑海马的数值仿真研究                                           405


                 Liu Zhihua, Qian Xuehua, Zhou Tingyong, et al. Mea-  1023–1033.
                 surement of hippcompal morphology in human brain by  [27] Pinton G, Aubry J F, Fink M, et al. Effects of nonlinear
                 MRI[J]. Journal of Third Military Medical University,  ultrasound propagation on high intensity brain therapy[J]
                 2012, 34(16): 1636–1641.                          Medical Physics, 2011, 38(3): 1207–1216.
             [15] Nahirnyak V, Mast T D, Holland C K. Ultrasound-  [28] Zhang Y, Zhang M, Ling Z, et al. The influence of tran-
                 induced thermal elevation in clotted blood and cranial  scranial magnetoacoustic stimulation parameters on the
                 bone[J]. Ultrasound in Medicine and Biology, 2007, 33(8):  basal ganglia-thalamus neural network in Parkinson’s dis-
                 1285–1295.                                        ease[J]. Frontiers in Neuroscience, 2021, 15: 1389.
             [16] Qiu W, Bouakaz A, Konofagou E E, et al. Ultrasound  [29] 赵旺兄, 乔清理, 王丹. 海马 CA3 区联想记忆功能的神经
                 for the brain: a review of physical and engineering prin-  网络建模 [J]. 中国组织工程研究与临床康复, 2010, 14(17):
                 ciples, and clinical applications[J]. IEEE Transactions on  3113–3116.
                 Ultrasonics Ferroelectrics and Frequency Control, 2020,  Zhao Wangxiong, Qiao Qingli, Wang Dan. Neural net-
                 PP(99): 1–1.                                      work modeling of hippocampal CA3 associative memory
             [17] Westervelt, Peter J. Parametric acoustic array[J]. The  functions[J]. Chinese Journal of Tissue Engineering Re-
                 Journal of the Acoustical Society of America, 1963, 35(4):
                                                                   search, 2010, 14(17): 3113–3116.
                 535–537.
                                                                [30] Thomas J L, Fink M A. Ultrasonic beam focusing through
             [18] Ding X, Wang Y, Zhang Q, et al. Modulation of transcra-
                                                                   tissue inhomogeneities with a time reversal mirror: appli-
                 nial focusing thermal deposition in nonlinear HIFU brain
                                                                   cation to transskull therapy[J]. Ultrasonics Ferroelectrics
                 surgery by numerical simulation[J]. Physcis in Medicine
                                                                   and Frequency Control IEEE Transactions on, 1996,
                 and Biology, 2015, 60(10): 3975–3998.
                                                                   43(6): 1122–1129.
             [19] Aubry J F, Tanter M, Pernot M, et al. Experimental
                                                                [31] Chang S, Cao R, Zhang Y, et al. Treatable focal region
                 demonstration of noninvasive transskull adaptive focusing
                                                                   modulated by double excitation signal superimposition to
                 based on prior computed tomography scans[J]. The Jour-
                                                                   realize platform temperature distribution during transcra-
                 nal of the Acoustical Society of America, 2003, 113(1):
                                                                   nial brain tumor therapy with high-intensity focused ul-
                 84–93.
                                                                   trasound[J]. Chinese Physics B, 2018, 27(7): 078701.
             [20] Pennes H H. Analysis of tissue and arterial blood temper-
                                                                [32] Clement G T, White J, Hynynen K. Investigation of a
                 atures in the resting human forearm[J]. Journal of Applied
                                                                   large-area phased array for focused ultrasound surgery
                 Physiology, 1948, 1(2): 93–122.
                                                                   through the skull[J] Physics in Medicine and Biology,
             [21] Kim H, Chiu A, Lee S D, et al.  Focused ultrasound-
                                                                   2000, 45(4): 1071–1083.
                 mediated non-invasive brain stimulation: examination of
                                                                [33] 张艳秋, 张浩, 孙天宇, 等. 剪切波对 HIFU 经颅聚焦形成温度
                 sonication parameters[J]. Brain Stimulation, 2014, 7(5):
                                                                   场影响的数值仿真研究 [J]. 应用声学, 2019, 38(3): 411–418.
                 748–756.
                                                                   Zhang Yanqiu, Zhang Hao, Sun Tianyu, et al. Numerical
             [22] 王会琴, 周晓青, 刘世坤, 等. 经颅磁声刺激与经颅超声刺激诱
                                                                   simulation of the effect of shear wave on the temperature
                 发肌电运动阈值的对比研究 [J]. 医疗卫生装备, 2019, 40(1):
                                                                   field of HIFU transcranial focusing [J]. Journal of Appiled
                 14–19.
                                                                   Acoustics, 2019, 38(3): 411–418.
                 Wang Huiqin, Zhou Xiaoqing, Liu Shikun, et al. Compar-
                                                                [34] 王祥达, 苏畅, 林伟军, 等. 剪切波对时间反转调相的经颅聚
                 ative study of transcranial magnetic stimulation and tran-
                                                                   焦超声的影响 [J]. 应用声学, 2018, 37(3): 315–323.
                 scranialultrasound stimulation on induced EMG motion
                                                                   Wang Xiangda, Su Chang, Lin Weijun, et al. Influence
                 threshold[J]. Chinese Medical Equipment Journal, 2019,
                 40(1): 14–19.                                     of shear waves on transcranial focused ultrasound using
             [23] Izhikevich E M. Simple model of spiking neurons[J].  time-reversal-based phase modulations[J]. Journal of Ap-
                 IEEE Transactions on Neural Networks, 2003, 14(6):  piled Acoustics, 2018, 37(3): 315–323.
                 1569–1572.                                     [35] Blackmore J, Shrivastava S, Sallet J, et al.  Ultra-
             [24] Baniasad F, Makkiabadi B, Solgi R, et al. Transcranial  sound neuromodulation: a review of results, mechanisms
                 focused ultrasound modulates electrical behavior of the  and safety[J]. Ultrasound in Medicine and Biology, 2019,
                 neurons: design and implementation of a model[J]. Jour-  45(7): 1509–1536.
                 nal of Biomedical Physcis and Engineering, 2020, 10(1):  [36] Juan E J, González R, Albors G, et al. Vagus nerve mod-
                 65–74.                                            ulation using focused pulsed ultrasound: potential appli-
             [25] Jian X, Morita N, Shi Q, et al. FDTD simulation of non-  cations and preliminary observations in a rat[J]. Interna-
                 linear ultrasonic pulse propagation in ESWL[C]. 27th An-  tional Journal of Imaging Systems and Technology, 2014,
                 nual International Conference of the IEEE Engineering in  24(1): 67–71.
                 Medicine and Biology Society, 2005, 2: 1806–1809.  [37] Plaksin M, Kimmel E, Shoham S. Cell-type-selective ef-
             [26] Okita K, Narumi R, Azuma T, et al. The role of nu-  fects of intramembrane cavitation as a unifying theoreti-
                 merical simulation for the development of an advanced  cal framework for ultrasonic neuromodulation[J]. eNeuro,
                 HIFU system[J]. Computational Mechanics, 2014, 54(4):  2016, 3(3): ENEURO0136–152016.
   212   213   214   215   216   217   218   219   220   221   222