Page 109 - 《应用声学》2023年第3期
P. 109

第 42 卷 第 3 期                   张雪晴等: 超声换能器辐射特性的优化                                           547


             不仅可以提高换能器的声辐射效率,而且可以改善                                sound transducer application[J]. IEEE Transactions on
             换能器的空间指向性,这一特性可以为发射/检测                                Ultrasonics, Ferroelectrics, and Frequency Control, 2009,
                                                                   56(1): 213–219.
             两用的中低强度超声换能器设计提供理论基础,提
                                                                 [9] Zhang R, Cao W W, Zhou Q F, et al. Acoustic properties
             高换能器应用效果。                                             of alumina colloidal/polymer nano-composite film on sil-
                                                                   icon[J]. IEEE Transactions on Ultrasonics, Ferroelectrics,
                                                                   and Frequency Control, 2007, 54(3): 467–469.
                            参 考     文   献                       [10] Tiefensee F, Becker-Willinger C, Heppe G, et al.
                                                                   Nanocomposite cerium oxide polymer matching layers
              [1] Huang X W, Niu L L, Meng L, et al. Transcranial low-  with adjustable acoustic impedance between 4 MRayl and
                 intensity pulsed ultrasound stimulation induces neuronal  7 MRayl[J]. Ultrasonics, 2010, 50(3): 363–366.
                 autophagy[J]. IEEE Transactions on Ultrasonics, Ferro-  [11] Manh T, Jensen G U, Johansen T F, et al. Microfabri-
                 electrics, and Frequency Control, 2021, 68(1): 46–53.  cated 1–3 composite acoustic matching layers for 15 MHz
              [2] Ye J, Tang S Y, Meng L, et al. Ultrasonic control of neural  transducers[J]. Ultrasonics, 2013, 53(6): 1141–1149.
                 activity through activation of the mechanosensitive chan-  [12] Fei C L, Ma J G, Chiu C T, et al. Design of matching lay-
                 nel MscL[J]. Nano Letters, 2018, 18(7): 4148–4155.  ers for high-frequency ultrasonic transducers[J]. Applied
              [3] Errico C, Pierre J, Pezet S, et al. Ultrafast ultrasound  Physics Letters, 2015, 107(12): 123505.
                 localization microscopy for deep super-resolution vascular  [13] Li Z, Yang D Q, Liu S L, et al.  Broadband gradient
                 imaging[J]. Nature, 2015, 527(7579): 499–502.     impedance matching using an acoustic metamaterial for
              [4] Li P, Yang X B, Yin G J, et al. Skeletal muscle fatigue  ultrasonic transducers[J]. Scientific Reports, 2017, 7(6):
                 state evaluation with ultrasound image entropy[J]. Ultra-  42863.
                 sonic Imaging, 2020, 42(6): 235–244.           [14] State M, Brands P J, van de Vosse F N. Improving the
              [5] Zhou H, Niu L L, Xia X X, et al. Wearable ultrasound  thermal dimensional stability of flexible polymer compos-
                 improves motor function in an MPTP mouse model of  ite backing materials for ultrasound transducers[J]. Ultra-
                 Parkinson’s disease[J]. IEEE Transactions on Bio-medical  sonics, 2009, 50(4): 458–466.
                 engineering, 2019, 66(11): 3006–3013.          [15] Amini M H, Coyle T W, Sinclair T. Porous ceramics
              [6] Chaki S, Bourse G. Guided ultrasonic waves for non-  as backing element for high-temperature transducers[J].
                 destructive monitoring of the stress levels in prestressed  IEEE Transactions on Ultrasonics, Ferroelectrics, and Fre-
                 steel strands[J]. Ultrasonics, 2009, 49(2): 162–171.  quency Control, 2015, 62(2): 360–372.
              [7] Alobaidi W M, Alkuam E A, Al-Rizzo H M, et al. Ap-  [16] Souquet J, Defranould P, Desbois J. Design of low-loss
                 plications of ultrasonic techniques in oil and gas pipeline  wide-band ultrasonic transducers for noninvasive medical
                 industries: a review[J]. American Journal of Operations  application[J]. IEEE Transactions on Sonics and Ultra-
                 Research, 2015, 5(4): 274–287.                    sonics, 1979, 26(2): 75–80.
              [8] Zhou Q F, Cha J H, Huang Y H, et al. Alumina/epoxy  [17] 林书玉. 超声换能器的原理及设计 [M]. 北京: 科学出版社,
                 nanocomposite matching layers for high-frequency ultra-  2004.
   104   105   106   107   108   109   110   111   112   113   114