Page 109 - 《应用声学》2023年第3期
P. 109
第 42 卷 第 3 期 张雪晴等: 超声换能器辐射特性的优化 547
不仅可以提高换能器的声辐射效率,而且可以改善 sound transducer application[J]. IEEE Transactions on
换能器的空间指向性,这一特性可以为发射/检测 Ultrasonics, Ferroelectrics, and Frequency Control, 2009,
56(1): 213–219.
两用的中低强度超声换能器设计提供理论基础,提
[9] Zhang R, Cao W W, Zhou Q F, et al. Acoustic properties
高换能器应用效果。 of alumina colloidal/polymer nano-composite film on sil-
icon[J]. IEEE Transactions on Ultrasonics, Ferroelectrics,
and Frequency Control, 2007, 54(3): 467–469.
参 考 文 献 [10] Tiefensee F, Becker-Willinger C, Heppe G, et al.
Nanocomposite cerium oxide polymer matching layers
[1] Huang X W, Niu L L, Meng L, et al. Transcranial low- with adjustable acoustic impedance between 4 MRayl and
intensity pulsed ultrasound stimulation induces neuronal 7 MRayl[J]. Ultrasonics, 2010, 50(3): 363–366.
autophagy[J]. IEEE Transactions on Ultrasonics, Ferro- [11] Manh T, Jensen G U, Johansen T F, et al. Microfabri-
electrics, and Frequency Control, 2021, 68(1): 46–53. cated 1–3 composite acoustic matching layers for 15 MHz
[2] Ye J, Tang S Y, Meng L, et al. Ultrasonic control of neural transducers[J]. Ultrasonics, 2013, 53(6): 1141–1149.
activity through activation of the mechanosensitive chan- [12] Fei C L, Ma J G, Chiu C T, et al. Design of matching lay-
nel MscL[J]. Nano Letters, 2018, 18(7): 4148–4155. ers for high-frequency ultrasonic transducers[J]. Applied
[3] Errico C, Pierre J, Pezet S, et al. Ultrafast ultrasound Physics Letters, 2015, 107(12): 123505.
localization microscopy for deep super-resolution vascular [13] Li Z, Yang D Q, Liu S L, et al. Broadband gradient
imaging[J]. Nature, 2015, 527(7579): 499–502. impedance matching using an acoustic metamaterial for
[4] Li P, Yang X B, Yin G J, et al. Skeletal muscle fatigue ultrasonic transducers[J]. Scientific Reports, 2017, 7(6):
state evaluation with ultrasound image entropy[J]. Ultra- 42863.
sonic Imaging, 2020, 42(6): 235–244. [14] State M, Brands P J, van de Vosse F N. Improving the
[5] Zhou H, Niu L L, Xia X X, et al. Wearable ultrasound thermal dimensional stability of flexible polymer compos-
improves motor function in an MPTP mouse model of ite backing materials for ultrasound transducers[J]. Ultra-
Parkinson’s disease[J]. IEEE Transactions on Bio-medical sonics, 2009, 50(4): 458–466.
engineering, 2019, 66(11): 3006–3013. [15] Amini M H, Coyle T W, Sinclair T. Porous ceramics
[6] Chaki S, Bourse G. Guided ultrasonic waves for non- as backing element for high-temperature transducers[J].
destructive monitoring of the stress levels in prestressed IEEE Transactions on Ultrasonics, Ferroelectrics, and Fre-
steel strands[J]. Ultrasonics, 2009, 49(2): 162–171. quency Control, 2015, 62(2): 360–372.
[7] Alobaidi W M, Alkuam E A, Al-Rizzo H M, et al. Ap- [16] Souquet J, Defranould P, Desbois J. Design of low-loss
plications of ultrasonic techniques in oil and gas pipeline wide-band ultrasonic transducers for noninvasive medical
industries: a review[J]. American Journal of Operations application[J]. IEEE Transactions on Sonics and Ultra-
Research, 2015, 5(4): 274–287. sonics, 1979, 26(2): 75–80.
[8] Zhou Q F, Cha J H, Huang Y H, et al. Alumina/epoxy [17] 林书玉. 超声换能器的原理及设计 [M]. 北京: 科学出版社,
nanocomposite matching layers for high-frequency ultra- 2004.