Page 45 - 《应用声学)》2023年第5期
P. 45

第 42 卷 第 5 期                 宋寿鹏等: 纳米填充硅橡胶超声干耦合特性                                           937


                 nondestructive testing of elastic constants of materials[J].  ultrasonic transcutaneous energy transfer[D]. Nova Scotia,
                 Journal of Basic Science and Engineering, 2016, 24(5):  Canada: Dalhousie University, 2017: 91–92.
                 1046–1055.                                     [18] 唐东林, 胡琳, 汤炎锦, 等. 超声波固态耦合声特性研究 [J]. 振
             [10] Couvreur  J  F,  Thimus  J  F.  The  properties  of  动、测试与诊断, 2019, 39(4): 789–794, 905–906.
                 coupling  agents  in  improving  ultrasonic  transmis-  Tang Donglin, Hu Lin, Tang Yanjin, et al. Study on sound
                 sion[C]//International Journal of Rock Mechanics and  characteristics of ultrasonic solid-state coupling[J]. Jour-
                 Mining Sciences & Geomechanics Abstracts. Pergamon,  nal of Vibration, Measurement & Diagnosis, 2019, 39(4):
                 1996, 33(4): 417–424.                             789–794, 905–906.
             [11] Bhadwal N, Torabi M M, Coyle T, et al. Dry coupling  [19] Drinkwater B, Dwyer-Joyce R, Cawley P. A study of
                 of ultrasonic transducer components for high temperature  the transmission of ultrasound across solid–rubber inter-
                 applications[J]. Sensors(Basel), 2019, 19(24): 5383.  faces[J]. The Journal of the Acoustical Society of America,
             [12] Allam A, Patel H, Sugino C, et al.  Detachable dry-  1997, 101(2): 970–981.
                 coupled ultrasonic power transfer through metallic en-  [20] Tatersall H G. The ultrasonic pulse-echo technique as ap-
                 closures[C]//2021 IEEE International Ultrasonics Sympo-  plied to adhesion testing[J]. Journal of Physics D: Applied
                 sium (IUS). IEEE, 2021: 1–3.                      Physics, 1973, 6(7): 819–832.
             [13] Watson R, Kamel M, Zhang D, et al. Dry coupled ultra-  [21] 刘鹏波, 简小华, 韩志乐, 等. 高频医用超声换能器材料声匹
                 sonic non-destructive evaluation using an over-actuated  配特性研究 [J]. 压电与声光, 2016, 38(3): 450–453.
                 unmanned aerial vehicle[J]. IEEE Transactions on Au-  Liu Pengbo, Jian Xiaohua, Han Zhile, et al. Study on
                 tomation Science and Engineering, 2021: 1–16.     acoustic matching characteristics of high frequency med-
             [14] Tohmyoh H, Akaogi T. Rubber-coupled acoustic mi-  ical ultrasonic transducer materials[J]. Piezoelectrics &
                 croscopy for dry inspections of industrial products[J].  Acoustooptics, 2016, 38(3): 450–453.
                 NDT and E International, 2007, 40(5): 368–373.  [22] Wu C, Gao Y, Liang X, et al. Manifestation of interac-
             [15] Zhou Q, Lam K H, Zheng H, et al. Piezoelectric single  tions of nano-silica in silicone rubber investigated by low-
                 crystals for ultrasonic transducers in biomedical applica-  frequency dielectric spectroscopy and mechanical tests[J].
                 tions[J]. Progress in Materials Science, 2014, 66: 87–111.  Polymers(Basel), 2019, 11(4): 717.
             [16] Hosono Y, Yamashita Y, Itsumi K. Effects of fine metal  [23] 王康, 王建国, 郑峰, 等. 白炭黑含量对硅橡胶结构和憎水恢
                 oxide particle dopant on the acoustic properties of sili-  复性影响 [J]. 电工技术学报, 2016, 31(12): 31–39.
                 cone rubber lens for medical array probe[J]. IEEE Trans-  Wang Kang, Wang Jianguo, Zheng Feng, et al. Effect of
                 actions on Ultrasonics, Ferroelectrics, and Frequency Con-  silica content on structure and hydrophobic recovery of
                 trol, 2007, 54(8): 1589–1595.                     silicone rubber[J]. Transactions of China Electrotechnical
             [17] Norman J E. Development of a dry coupling material for  Society, 2016, 31(12): 31–39.
   40   41   42   43   44   45   46   47   48   49   50