Page 54 - 《应用声学》2025年第1期
P. 54

50                                                                                   2025 年 1 月


                 surements[C]//OCEANS 2022-Chennai. February 21–24,  [60] Baggeroer A B, Kuperman W A, Mikhalevsky P N.
                 2022. Chennai, India. IEEE, 2022: 1–4.            An overview of matched field methods in ocean acous-
             [50] 胡青, 宫先仪. 方位/频率目标运动分析实验研究 [J]. 声学学                tics[J]. IEEE Journal of Oceanic Engineering, 1993, 18(4):
                 报, 2005, 30(2): 120–124.                          401–424.
                 Hu Qing, Gong Xianyi. Experimental research of bear-  [61] Klemm R. Range and depth estimation by line arrays in
                 ing/frequency target motion analysis[J]. Acta Acustica,  shallow water[J]. Signal Processing, 1981, 3(4): 333–344.
                 2005, 30(2): 120–124.                          [62] Fizell R G. Application of high-resolution processing to
             [51] 郭鑫, 葛凤翔, 郭良浩. 改进的自适应 Kalman 滤波及其                 range and depth estimation using ambiguity function
                 在水声机动目标跟踪中的应用 [J]. 声学学报, 2011, 36(6):             methods[J]. The Journal of the Acoustical Society of
                 611–618.                                          America, 1987, 82(2): 606–613.
                 Guo Xin, Ge Fengxiang, Guo Lianghao. Improved adap-  [63] Baggeroer A B, Kuperman W A, Schmidt H. Matched
                 tive Kalman filtering and its application in acoustic ma-  field processing: Source localization in correlated noise as
                 neuvering target tracking[J]. Acta Acustica, 2011, 36(6):  an optimum parameter estimation problem[J]. The Jour-
                 611–618.                                          nal of the Acoustical Society of America, 1988, 83(2):
             [52] 梅鹏, 孙振新, 马沙沙. 基于机动检测的水下目标自适应跟踪                   571–587.
                                                                [64] Cao R, Yang K D, Ma Y L, et al. Passive broadband
                 算法 [J]. 舰船科学技术, 2022, 44(6): 114–120.
                                                                   source localization based on a Riemannian distance with
                 Mei Peng, Sun Zhenxin, Ma Shasha.  Adaptive track-
                                                                   a short vertical array in the deep ocean[J]. The Jour-
                 ing algorithm for underwater target based on maneuver
                                                                   nal of the Acoustical Society of America, 2019, 145(6):
                 detection[J]. Ship Science and Technology, 2022, 44(6):
                                                                   EL567–EL573.
                 114–120.
                                                                [65] Tran J Q D, Hodgkiss W S. Matched-field processing of
             [53] 孙大军, 张艺翱, 滕婷婷, 等. 单站水下方位频率机动目标运
                                                                   200-Hz continuous wave (CW) signals[J]. The Journal of
                 动分析方法 [J]. 声学学报, 2024, 49(4): 683–695.
                                                                   the Acoustical Society of America, 1991, 89(2): 745–755.
                 Sun Dajun, Zhang Yiao, Teng Tingting, et al. A single-
                                                                [66] Westwood E K. Broadband matched-field source localiza-
                 platform underwater maneuvering target motion analysis
                                                                   tion[J]. The Journal of the Acoustical Society of America,
                 method based on bearing and frequency measurements[J].
                                                                   1992, 91(5): 2777–2789.
                 Acta Acustica, 2024, 49(4): 683-695.
                                                                [67] 周士弘, 张仁和, 龚敏, 等. WKBZ 简正波方法在深海匹配
             [54] 徐鹏, 郭良浩, 闫超, 等. 方位和径向速度联合的浅海目标运
                                                                   场定位中的应用 [J]. 自然科学进展 (国家重点实验室通讯),
                 动分析方法 [J]. 声学学报, 2018, 43(3): 323–333.
                                                                   1997(6): 661–667.
                 Xu Peng, Guo Lianghao, Yan Chao, et al. Target mo-
                                                                [68] 陈连荣, 彭朝晖. 高斯射线束法在深海声源定位中的应用 [J].
                 tion analysis method using bearing and radial velocity in
                                                                   应用声学, 2012, 31(5): 365–371.
                 shallow water[J]. Acta Acustica, 2018, 43(3): 323–333.
                                                                   Chen Lianrong, Peng Zhaohui. Application of Gaussian
             [55] 李瑨瑶, 王海斌, 徐鹏, 等. 联合方位 -径向速度的粒子滤波目
                                                                   beam method in deep ocean matched-field localizations[J].
                 标运动分析 [J]. 声学学报, 2019, 44(4): 523–533.
                                                                   Applied Acoustics, 2012, 31(5): 365–371.
                 Li Jinyao, Wang Haibin, Xu Peng, et al. Target motion
                                                                [69] 陈连荣, 彭朝晖, 南明星. 高斯射线束方法在深海匹配场定位
                 analysis method based on particle filter using bearing and
                                                                   中的应用 [J]. 声学学报, 2013, 38(6): 715–723.
                 radial velocity[J]. Acta Acustica, 2019, 44(4): 523–533.
                                                                   Chen Lianrong, Peng Zhaohui, Nan Mingxing. The appli-
             [56] Maranda B H, Fawcett J A. Detection and localization of
                                                                   cation of Gaussian beam method in deep ocean matched-
                 weak targets by space-time integration[J]. IEEE Journal  field localization[J]. Acta Acustica, 2013, 38(6): 715–723.
                 of Oceanic Engineering, 1991, 16(2): 189–194.
                                                                [70] Tolstoy A. Sensitivity of matched field processing to
             [57] 毛卫宁, 陈励军. 一种新的目标运动分析方法 [J]. 声学学报,                sound-speed profile mismatch for vertical arrays in a deep
                 1998, 23(5): 417–421.                             water Pacific environment[J]. The Journal of the Acousti-
                 Mao Weining, Chen Lijun. A novel method for analysis  cal Society of America, 1989, 85(6): 2394–2404.
                 of target motion analysis[J]. Acta Acustica, 1998, 23(5):  [71] Schmidt H, Baggeroer A B, Kuperman W A, et al. En-
                 417–421.                                          vironmentally tolerant beamforming for high-resolution
             [58] Fawcett J A, Maranda B H. A hybrid target motion  matched field processing: Deterministic mismatch[J]. The
                 analysis/matched-field processing localization method[J].  Journal of the Acoustical Society of America, 1990, 88(4):
                 The Journal of the Acoustical Society of America, 1993,  1851–1862.
                 94(3): 1363–1371.                              [72] Yang T C. A method of range and depth estimation by
             [59] 吴俊楠, 周士弘, 张岩. 深海水平阵海底反射声测向分析 [J].                modal decomposition[J]. The Journal of the Acoustical
                 声学技术, 2015, 34(6): 267–270.                       Society of America, 1987, 82(5): 1736–1745.
                 Wu Junnan, Zhou Shihong, Zhang Yan. Deep water az-  [73] Yang T C. Effectiveness of mode filtering: A compari-
                 imuth estimation using bottom bounce sound received  son of matched-field and matched-mode processing[J]. The
                 by a horizontal line array[J]. Technical Acoustics, 2015,  Journal of the Acoustical Society of America, 1990, 87(5):
                 34(6): 267–270.                                   2072–2084.
   49   50   51   52   53   54   55   56   57   58   59