Page 55 - 《应用声学》2025年第1期
P. 55

第 44 卷 第 1 期             刘与涵等: 深海移动水平阵声源被动定位方法研究进展                                           51


             [74] Geroski D J, Dowling D R. Long-range frequency-  field frequency-range interference patterns in deep water:
                 difference source localization in the Philippine Sea[J]. The  Theory and experiment[J]. Acta Acustica, 2016, 41(3):
                 Journal of the Acoustical Society of America, 2019, 146(6):  330–342.
                 4727–4739.                                     [87] Duan R, Yang K D, Li H, et al. Acoustic-intensity stria-
             [75] Geroski D J, Dowling D R. Robust long-range source lo-  tions below the critical depth: Interpretation and model-
                 calization in the deep ocean using phase-only matched au-  ing[J]. The Journal of the Acoustical Society of America,
                 toproduct processing[J]. The Journal of the Acoustical So-  2017, 142(3): EL245–EL250.
                 ciety of America, 2021, 150(1): 171–182.       [88] Duan R, Yang K D, Li H, et al. A performance study
             [76] Geroski D J, Worthmann B M. Frequency-difference au-  of acoustic interference structure applications on source
                 toproduct cross-term analysis and cancellation for im-  depth estimation in deep water[J]. The Journal of the
                 proved ambiguity surface robustness[J]. The Journal of  Acoustical Society of America, 2019, 145(2): 903–916.
                 the Acoustical Society of America, 2021, 149(2): 868–884.  [89] Wu Y Q, Li P Z, Guo W, et al. Passive source depth
             [77] 胡佳华, 甘维明, 季桂花, 等. 基于差频匹配场的深海声源定                  estimation using beam intensity striations of a horizontal
                 位方法 [J]. 网络新媒体技术, 2023, 12(6): 51–59.             linear array in deep water[J]. The Journal of the Acousti-
                 Hu Jiahua, Gan Weiming, Ji Guihua, et al. Source lo-  cal Society of America, 2023, 154(1): 255–269.
                 calization method in the deep ocean based on frequency-  [90] Wu Y Q, Guo W, Wang F Y, et al. Striation-based broad-
                 difference matched field[J]. Network New Media Technol-  band source localization using a particle velocity sensor
                 ogy, 2023, 12(6): 51–59.                          in deep water[J]. IEEE Journal of Oceanic Engineering,
             [78] Yang T C, Yates T. Matched-beam processing: Appli-  2023, 48(3): 789–805.
                 cation to a horizontal line array in shallow water[J]. The  [91] McCargar R, Zurk L M. Depth-based signal separation
                 Journal of the Acoustical Society of America, 1998, 104(3):  with vertical line arrays in the deep ocean[J]. The Jour-
                 1316–1330.                                        nal of the Acoustical Society of America, 2013, 133(4):
             [79] 李风华, 刘建军, 张仁和. 水平阵匹配场定位技术研究 [C]//                EL320–EL325.
                 2004 年全国水声学学术会议论文集. 黄山, 2004: 29–31.           [92] Boyle J K. Performance metrics for depth-based signal
             [80] Duan R, Yang K D, Ma Y L, et al. A reliable acous-  separation using deep vertical line arrays[D]. Portland:
                 tic path: Physical properties and a source localization  Portland State University, 2015.
                 method[J]. Chinese Physics B, 2012, 21(12): 124301.  [93] Kniffin G P, Boyle J K, Zurk L M, et al. Performance
             [81] Lei Z X, Yang K D, Ma Y L. Passive localization in  metrics for depth-based signal separation using deep ver-
                 the deep ocean based on cross-correlation function match-  tical line arrays[J]. The Journal of the Acoustical Society
                 ing[J]. The Journal of the Acoustical Society of America,  of America, 2016, 139(1): 418–425.
                 2016, 139(6): EL196–EL201.                     [94] Li H, Wang T, Su L, et al. Passive depth estimation for
             [82] 王梦圆, 李整林, 吴双林, 等. 深海大深度声传播特性及直达                  a narrowband source using a single vector sensor in deep
                 声区水下声源距离估计 [J]. 声学学报, 2019, 44(5): 905–912.       water[J]. JASA Express Letters, 2023, 3(6): 066002.
                 Wang Mengyuan, Li Zhenglin, Wu Shuanglin, et al. The  [95] Wei R Y, Ma X C, Li X. Ray separation and source
                 characteristics of sound propagation in deep water and un-  depth estimation based on sound pressure field trans-
                 derwater sound source ranging in the direct zone[J]. Acta  formation[C]//ICASSP 2020–2020 IEEE International
                 Acustica, 2019, 44(5): 905–912.                   Conference on Acoustics, Speech and Signal Processing
             [83] 王梦圆, 李整林, 秦继兴, 等. 深海直达声区水下声源距离深                  (ICASSP). May 4–8, 2020. Barcelona, Spain. IEEE, 2020:
                 度联合估计 [J]. 信号处理, 2019, 35(9): 1535–1543.          4652–4656.
                 Wang Mengyuan, Li Zhenglin, Qin Jixing, et al. Com-  [96] Wei R Y, Ma X C, Li X. Depth estimation of deep water
                 bined estimation of range and depth for underwater source  moving source based on ray separation[J]. Applied Acous-
                 in the direct zone in deep water[J]. Journal of Signal Pro-  tics, 2021, 174: 107739.
                 cessing, 2019, 35(9): 1535–1543.               [97] Liu Y H, Guo L H, Zhang W Y, et al. Range estimation
             [84] Duan R, Yang K D, Ma Y L, et al. Moving source lo-  of a moving source using interference patterns in deep wa-
                 calization with a single hydrophone using multipath time  ter[J]. JASA Express Letters, 2022, 2(12): 126001.
                 delays in the deep ocean[J]. The Journal of the Acoustical  [98] Munk W. Scattering into the shadow zone[J]. The
                 Society of America, 2014, 136(2): EL159–EL165.    Journal of the Acoustical Society of America, 2001,
             [85] Duan R, Yang K D, Wu F Y, et al. Particle filter for  109(5_Supplement): 2386.
                 multipath time delay tracking from correlation functions  [99] Udovydchenkov I A, Stephen R A, Duda T F, et al. Bot-
                 in deep water[J]. The Journal of the Acoustical Society of  tom interacting sound at 50 km range in a deep ocean
                 America, 2018, 144(1): 397–411.                   environment[J]. The Journal of the Acoustical Society of
             [86] 翁晋宝, 李风华, 郭永刚. 典型深海声场频率 -距离干涉结构分                 America, 2012, 132(4): 2224–2231.
                 析及实验研究 [J]. 声学学报, 2016, 41(3): 330–342.       [100] Chen C, Yang K D, Ma Y L, et al. Comparison of sur-
                 Weng Jinbao, Li Fenghua, Guo Yonggang. The sound  face duct energy leakage with bottom-bounce energy of
   50   51   52   53   54   55   56   57   58   59   60