Page 55 - 《应用声学》2025年第1期
P. 55
第 44 卷 第 1 期 刘与涵等: 深海移动水平阵声源被动定位方法研究进展 51
[74] Geroski D J, Dowling D R. Long-range frequency- field frequency-range interference patterns in deep water:
difference source localization in the Philippine Sea[J]. The Theory and experiment[J]. Acta Acustica, 2016, 41(3):
Journal of the Acoustical Society of America, 2019, 146(6): 330–342.
4727–4739. [87] Duan R, Yang K D, Li H, et al. Acoustic-intensity stria-
[75] Geroski D J, Dowling D R. Robust long-range source lo- tions below the critical depth: Interpretation and model-
calization in the deep ocean using phase-only matched au- ing[J]. The Journal of the Acoustical Society of America,
toproduct processing[J]. The Journal of the Acoustical So- 2017, 142(3): EL245–EL250.
ciety of America, 2021, 150(1): 171–182. [88] Duan R, Yang K D, Li H, et al. A performance study
[76] Geroski D J, Worthmann B M. Frequency-difference au- of acoustic interference structure applications on source
toproduct cross-term analysis and cancellation for im- depth estimation in deep water[J]. The Journal of the
proved ambiguity surface robustness[J]. The Journal of Acoustical Society of America, 2019, 145(2): 903–916.
the Acoustical Society of America, 2021, 149(2): 868–884. [89] Wu Y Q, Li P Z, Guo W, et al. Passive source depth
[77] 胡佳华, 甘维明, 季桂花, 等. 基于差频匹配场的深海声源定 estimation using beam intensity striations of a horizontal
位方法 [J]. 网络新媒体技术, 2023, 12(6): 51–59. linear array in deep water[J]. The Journal of the Acousti-
Hu Jiahua, Gan Weiming, Ji Guihua, et al. Source lo- cal Society of America, 2023, 154(1): 255–269.
calization method in the deep ocean based on frequency- [90] Wu Y Q, Guo W, Wang F Y, et al. Striation-based broad-
difference matched field[J]. Network New Media Technol- band source localization using a particle velocity sensor
ogy, 2023, 12(6): 51–59. in deep water[J]. IEEE Journal of Oceanic Engineering,
[78] Yang T C, Yates T. Matched-beam processing: Appli- 2023, 48(3): 789–805.
cation to a horizontal line array in shallow water[J]. The [91] McCargar R, Zurk L M. Depth-based signal separation
Journal of the Acoustical Society of America, 1998, 104(3): with vertical line arrays in the deep ocean[J]. The Jour-
1316–1330. nal of the Acoustical Society of America, 2013, 133(4):
[79] 李风华, 刘建军, 张仁和. 水平阵匹配场定位技术研究 [C]// EL320–EL325.
2004 年全国水声学学术会议论文集. 黄山, 2004: 29–31. [92] Boyle J K. Performance metrics for depth-based signal
[80] Duan R, Yang K D, Ma Y L, et al. A reliable acous- separation using deep vertical line arrays[D]. Portland:
tic path: Physical properties and a source localization Portland State University, 2015.
method[J]. Chinese Physics B, 2012, 21(12): 124301. [93] Kniffin G P, Boyle J K, Zurk L M, et al. Performance
[81] Lei Z X, Yang K D, Ma Y L. Passive localization in metrics for depth-based signal separation using deep ver-
the deep ocean based on cross-correlation function match- tical line arrays[J]. The Journal of the Acoustical Society
ing[J]. The Journal of the Acoustical Society of America, of America, 2016, 139(1): 418–425.
2016, 139(6): EL196–EL201. [94] Li H, Wang T, Su L, et al. Passive depth estimation for
[82] 王梦圆, 李整林, 吴双林, 等. 深海大深度声传播特性及直达 a narrowband source using a single vector sensor in deep
声区水下声源距离估计 [J]. 声学学报, 2019, 44(5): 905–912. water[J]. JASA Express Letters, 2023, 3(6): 066002.
Wang Mengyuan, Li Zhenglin, Wu Shuanglin, et al. The [95] Wei R Y, Ma X C, Li X. Ray separation and source
characteristics of sound propagation in deep water and un- depth estimation based on sound pressure field trans-
derwater sound source ranging in the direct zone[J]. Acta formation[C]//ICASSP 2020–2020 IEEE International
Acustica, 2019, 44(5): 905–912. Conference on Acoustics, Speech and Signal Processing
[83] 王梦圆, 李整林, 秦继兴, 等. 深海直达声区水下声源距离深 (ICASSP). May 4–8, 2020. Barcelona, Spain. IEEE, 2020:
度联合估计 [J]. 信号处理, 2019, 35(9): 1535–1543. 4652–4656.
Wang Mengyuan, Li Zhenglin, Qin Jixing, et al. Com- [96] Wei R Y, Ma X C, Li X. Depth estimation of deep water
bined estimation of range and depth for underwater source moving source based on ray separation[J]. Applied Acous-
in the direct zone in deep water[J]. Journal of Signal Pro- tics, 2021, 174: 107739.
cessing, 2019, 35(9): 1535–1543. [97] Liu Y H, Guo L H, Zhang W Y, et al. Range estimation
[84] Duan R, Yang K D, Ma Y L, et al. Moving source lo- of a moving source using interference patterns in deep wa-
calization with a single hydrophone using multipath time ter[J]. JASA Express Letters, 2022, 2(12): 126001.
delays in the deep ocean[J]. The Journal of the Acoustical [98] Munk W. Scattering into the shadow zone[J]. The
Society of America, 2014, 136(2): EL159–EL165. Journal of the Acoustical Society of America, 2001,
[85] Duan R, Yang K D, Wu F Y, et al. Particle filter for 109(5_Supplement): 2386.
multipath time delay tracking from correlation functions [99] Udovydchenkov I A, Stephen R A, Duda T F, et al. Bot-
in deep water[J]. The Journal of the Acoustical Society of tom interacting sound at 50 km range in a deep ocean
America, 2018, 144(1): 397–411. environment[J]. The Journal of the Acoustical Society of
[86] 翁晋宝, 李风华, 郭永刚. 典型深海声场频率 -距离干涉结构分 America, 2012, 132(4): 2224–2231.
析及实验研究 [J]. 声学学报, 2016, 41(3): 330–342. [100] Chen C, Yang K D, Ma Y L, et al. Comparison of sur-
Weng Jinbao, Li Fenghua, Guo Yonggang. The sound face duct energy leakage with bottom-bounce energy of