Page 58 - 《应用声学》2025年第1期
P. 58
54 2025 年 1 月
[147] Liu Y N, Niu H Q, Li Z L. Source ranging using ensemble volutional neural network for source localization in deep
convolutional networks in the direct zone of deep water[J]. ocean[J]. The Journal of the Acoustical Society of Amer-
Chinese Physics Letters, 2019, 36(4): 044302. ica, 2020, 148(2): 873–883.
[148] Chen R, Schmidt H. Model-based convolutional neural [152] Liu Y N, Niu H Q, Li Z L, et al. Deep-learning source
network approach to underwater source-range estima-
localization using autocorrelation functions from a single
tion[J]. The Journal of the Acoustical Society of America,
hydrophone in deep ocean[J]. JASA Express Letters, 2021,
2021, 149(1): 405–420.
1(3): 036002.
[149] Yang Y, Guo L H, Gong Z X. Discrimination method of
[153] Liu W X, Yang Y X, Xu M Q, et al. Source localization
convergence zones in deep sea based on machine learn-
in the deep ocean using a convolutional neural network[J].
ing[C]//Global Oceans 2020: Singapore-U.S. Gulf Coast.
The Journal of the Acoustical Society of America, 2020,
October 5-30, 2020. Biloxi, MS, USA. IEEE, 2020: 1–4.
[150] Wang W B, Ni H Y, Su L, et al. Deep transfer learn- 147(4): EL314–EL319.
ing for source ranging: Deep-sea experiment results[J]. [154] Liu Y N, Niu H Q, Yang S S, et al. Multiple source lo-
The Journal of the Acoustical Society of America, 2019, calization using learning-based sparse estimation in deep
146(4): EL317–EL322. ocean[J]. The Journal of the Acoustical Society of Amer-
[151] Liu Y N, Niu H Q, Li Z L. A multi-task learning con- ica, 2021, 150(5): 3773–3786.