Page 99 - 《应用声学》2025年第1期
P. 99

第 44 卷 第 1 期    肖权旌等: 改进 YOLOv5 的高密度聚乙烯管热熔接头 3D 全聚焦成像缺陷识别分析                                  95


             缺陷,由于其缺陷特性,容易造成 TFM 成像检测效                          [10] 肖权旌, 王强, 许卫荣, 等. 高密度聚乙烯管道热熔接头 3D 全
             果不明显,或是成像时形成的杂波、伪缺陷混淆非                                聚焦成像试验分析 [J]. 压力容器, 2022, 39(12): 62–70.
                                                                   Xiao Quanjing, Wang Qiang, Xu Weirong, et al. Exper-
             典型缺陷识别。针对此类缺陷,需进一步提出高分
                                                                   imental analysis of 3D total focusing method imaging of
             辨率 TFM 成像检测方法,同时也需要高精度的图                              hot melt joint of high-density polyethylene pipe[J]. Pres-
             像识别算法提升缺陷识别准确率。                                       sure Vessel Technology, 2022, 39(12): 62–70.
                                                                [11] 彭伊娟, 王振超, 张秋菊. 改进的 Faster-RCNN 算法在聚乙
                                                                   烯管接头内部缺陷检测中的应用 [J]. 应用声学, 2023, 42(5):
                            参 考     文   献                          984–992.
                                                                   Peng Yijuan, Wang Zhenchao, Zhang Qiuju. Application
                                                                   of improved Faster-RCNN algorithm in internal defect de-
              [1] Wang Y X, Lin D, Xiang M L, et al. Experimental study  tection of polyethylene pipe joint[J]. Journal of Applied
                 on aging performance of polyethylene gas pipelines[C].  Acoustics, 2023, 42(5): 984–992.
                 Proceedings of the 3rd International Conference on Air
                                                                [12] Chen Z Q, Li C, Sanchez R V. Gearbox fault identification
                 Pollution and Environmental Engineering, Electr Net-
                                                                   and classification with convolutional neural networks[J].
                 work, F Sep. 28–29, 2020, 2020.
                                                                   Shock and Vibration, 2015, 2015: 1–10.
              [2] Liu X B, Zhang H, Xia M Y, et al. Mechanical response of
                                                                [13] Ren R X, Hung T, Tan K C. A generic deep-learning-
                 buried polyethylene pipelines under excavation load dur-
                                                                   based approach for automated surface inspection[J]. IEEE
                 ing pavement construction[J]. Engineering Failure Analy-
                                                                   Transactions on Cybernetics, 2018, 48(3): 929–940.
                 sis, 2018, 90: 355–370.
                                                                [14] Yan Y, Liu D, Gao B, et al. A deep learning-based ultra-
              [3] Holmes C, Drinkwater B W, Wilcox P D. Post-processing
                                                                   sonic pattern recognition method for inspecting girth weld
                 of the full matrix of ultrasonic transmit–receive array data
                                                                   cracking of gas pipeline[J]. IEEE Sensors Journal, 2020,
                 for non-destructive evaluation[J]. NDT & E International,
                                                                   20(14): 7997–8006.
                 2005, 38(8): 701–711.
                                                                [15] Zhang D C, Stewart E, Entezami M, et al. Intelligent
              [4] 谢世杰, 许卫荣, 王强, 等. 高密度聚乙烯管热熔接头的全聚
                                                                   acoustic-based fault diagnosis of roller bearings using a
                 焦成像实验分析 [J]. 河南科技大学学报 (自然科学版), 2022,
                                                                   deep graph convolutional network[J]. Measurement, 2020,
                 43(1): 46–51, 7.
                                                                   156: 107585.
                 Xie Shijie, Xu Weirong, Wang Qiang, et al. Experimental
                                                                [16] Nguyen C D, Ahmad Z, Kim J M. Gearbox fault identi-
                 analysis of high density polyethylene butt fusion joints by
                                                                   fication framework based on novel localized adaptive de-
                 total focusing method imaging[J]. Journal of Henan Uni-
                                                                   noising technique, wavelet-based vibration imaging, and
                 versity of Science and Technology (Natural Science), 2022,
                                                                   deep convolutional neural network[J]. Applied Sciences-
                 43(1): 46–51, 7.
                                                                   Basel, 2021, 11(16): 7575.
              [5] De Villaver E L, Robert S, Prada C. Ultrasonic imaging
                 in highly attenuating materials with Hadamard codes and  [17] 余泽禹, 袁洪强, 卫小龙, 等. 基于深度学习的管道焊缝超
                 the decomposition of the time reversal operator[J]. IEEE  声检测缺陷识别方法 [J]. 科学技术与工程, 2022, 22(30):
                 Transactions on Ultrasonics Ferroelectrics & Frequency  13288–13292.
                 Control, 2017, 64(9): 1336–1344.                  Yu Zeyu, Yuan Hongqiang, Wei Xiaolong, et al. Defect
              [6] 解俊炜, 许卫荣, 王强, 等. 聚乙烯管热熔接头超声相控阵检                  identification method of pipeline weld ultrasonic testing
                 测及检出率定量分析 [J]. 河南科技大学学报 (自然科学版),                  based on deep learning[J]. Science Technology and Engi-
                 2019, 40(3): 11–16, 5.                            neering, 2022, 22(30): 13288–13292.
                 Xie Junwei, Xu Weirong, Wang Qiang, et al. Ultrasonic  [18] 桑宏强, 刘雨轩, 刘芬. 改进卷积神经网络在工件表面缺
                 phased array testing and probability of detection quanti-  陷检测中的应用 [J]. 组合机床与自动化加工技术, 2020(8):
                 tative analysis of polyethylene pipe butt fusion joints[J].  43–47.
                 Journal of Henan University of Science and Technology  Sang Hongqiang, Liu Yuxuan, Liu Feng. Application of
                 (Natural Science), 2019, 40(3): 11–16, 5.         improved convolutional neural network in surface defect
              [7] Marmonier M, Robert S, Laurent J, et al.  Real-time  detection of workpieces[J]. Modular Machine Tool and Au-
                 3D imaging with Fourier-domain algorithms and matrix  tomatic Manufacturing Technique, 2020(8): 43–47.
                 arrays applied to non-destructive testing[J]. Ultrasonics,  [19] 徐继升, 任姣姣, 张丹丹, 等. 基于小波散射网络的聚乙烯
                 2022, 124: 106708.                                管道热熔接头缺陷太赫兹识别 [J]. 光子学报, 2023, 52(1):
              [8] Saini A, Lane C J L, Tu J, et al. 3D ultrasonic imaging of  145–156.
                 surface-breaking cracks using a linear array[J]. Ultrason-  Xu Jisheng, Ren Jiaojiao, Zhang Dandan, et al. Terahertz
                 ics, 2022, 125: 106790.                           identification of hot melting joint defects in polyethylene
              [9] Mckee J G, Bevan R L T, Wilcox P D, et al.  Volu-  pipe based on wavelet scattering network[J]. Acta Pho-
                 metric imaging through a doubly-curved surface using a  tonica Sinica, 2023, 52(1): 145–156.
                 2D phased array[J]. NDT & E International, 2020, 113:  [20] Medak D, Posilovic L, Subasic M, et al. Automated defect
                 102260.                                           detection from ultrasonic images using deep learning[J].
   94   95   96   97   98   99   100   101   102   103   104