Page 228 - 《应用声学》2025年第2期
P. 228

488                                                                                  2025 年 3 月


                                                                 [9] Gómez Alvarez-Arenas T E. Acoustic impedance match-
             5 结论                                                  ing of piezoelectric transducers to the air[J]. IEEE Trans-
                                                                   actions on Ultrasonics, Ferroelectrics, and Frequency Con-
                 本文通过对空气耦合超声换能器第一级放大                               trol, 2004, 51(5): 624–633.
                                                                [10] Gómez Álvarez-Arenas T E, Camacho J, Fritsch C. Pas-
             电路建立噪声模型,根据噪声系数选定放大器型号
                                                                   sive focusing techniques for piezoelectric air-coupled ul-
             及设计合理的反馈电路,达到噪声匹配。详细阐述                                trasonic transducers[J]. Ultrasonics, 2016, 67: 85–93.
             超低噪声前置放大电路设计所遵循的理论依据,并                             [11] Turo A, Salazar J, Chavez J A, et al.  Ultra-low
                                                                   noise front-end electronics for air-coupled ultrasonic non-
             利用所设计的放大电路对超声探伤自动扫描平台
                                                                   destructive evaluation[J]. NDT & E International, 2003,
             中接收空气耦合超声探头的微弱信号进行了测量。                                36(2): 93–100.
             测量结果表明,本电路可以检测空气超声耦合换能                             [12] Yañez Y, Garcia-Hernandez M J, Salazar J, et al. De-
             器接收到的微弱信号,为低噪声可变增益放大电路                                signing amplifiers with very low output noise for high
                                                                   impedance piezoelectric transducers[J]. NDT & E Inter-
             提供设计思想。本放大采集电路系统可应用于超声                                national, 2005, 38(6): 491–496.
             探伤自动扫描平台,实现高效无损检测。本放大电                             [13] 尹辉. 基于场效应管的低噪声前置放大器的研究和设计 [D].
             路增益在 20∼100 dB 连续可调,可实现对微伏级信                          长春: 吉林大学, 2009.
                                                                [14] 张宸宸, 李松松, 夏闻泽, 等. 空气耦合超声无损检测系统电
             号的放大提取,也可应用于其他领域的弱信号检测
                                                                   路设计 [J]. 传感器与微系统, 2019, 38(1): 82–85.
             系统中。                                                  Zhang Chenchen, Li Songsong, Xia Wenze, et al. Cir-
                                                                   cuit design of air-coupled ultrasonic nondestructive de-
                                                                   tecting system[J]. Transducer and Microsystem Technolo-
                            参 考     文   献                          gies, 2019, 38(1): 82–85.
                                                                [15] 杜鹏, 姜楠, 宋波. 超声换能器频率特性及匹配研究 [J]. 电声
                                                                   技术, 2016, 40(1): 41–45.
              [1] 马保全, 周正干. 航空航天复合材料结构非接触无损检测技术                    Du Peng, Jiang Nan, Song Bo. Study on frequency char-
                 的进展及发展趋势 [J]. 航空学报, 2014, 35(7): 1787–1803.       acteristics and matching of ultrasonic transducer[J]. Audio
                 Ma Baoquan, Zhou Zhenggan.  Progress and develop-  Engineering, 2016, 40(1): 41–45.
                 ment trends of composite structure evaluation using non-  [16] 高晋占. 微弱信号检测 [M]. 北京: 清华大学出版社, 2004.
                 contact nondestructive testing techniques in aviation and  [17] 吴建斌, 田茂. 基于 AD603 的时变增益放大器的实现 [J]. 电
                 aerospace industries[J]. Acta Aeronautica et Astronautica  子测量技术, 2008, 31(4): 29–32.
                 Sinica, 2014, 35(7): 1787–1803.                   Wu Jianbin, Tian Mao. Implementation of time varying
              [2] 赵渠森. 先进复合材料手册 [M]. 北京: 机械工业出版社,                  gain amplifier based on the AD603[J]. Electronic Measure-
                 2003.                                             ment Technology, 2008, 31(4): 29–32.
              [3] 王洪博. 复合材料构件的超声无损检测关键技术研究 [D]. 北               [18] 温世仁. 微弱信号检测系统中的接地与屏蔽技术分析 [J]. 宇
                 京: 北京理工大学, 2024.                                  航计测技术, 2005, 25(2): 46–49.
              [4] McIntyre C S, Hutchins D A, Billson D R, et al. The use  Wen Shiren. The grounding and shielding technical analy-
                 of air-coupled ultrasound to test paper[J]. IEEE Transac-  sis on the measurement system of delicacy signal[J]. Jour-
                 tions on Ultrasonics, Ferroelectrics, and Frequency Con-  nal of Astronautic Metrology and Measurement, 2005,
                 trol, 2001, 48(3): 717–727.                       25(2): 46–49.
              [5] 周正干, 魏东. 空气耦合式超声波无损检测技术的发展 [J]. 机             [19] Kay A. 运算放大器噪声优化手册 [M]. 杨立敬, 译. 北京: 人
                 械工程学报, 2008, 44(6): 10–14.                        民邮电出版社, 2013.
                 Zhou Zhenggan, Wei Dong. Progress of air-coupled ul-  [20] Wen J W, Jiang C, Li Y B, et al. An auto-calibration
                 trasonic non-destructive testing technology[J]. Journal of  algorithm for hybrid guided wave tomography based
                 Mechanical Engineering, 2008, 44(6): 10–14.       on full waveform inversion[J]. IEEE Access, 2023, 11:
              [6] 冯若. 超声手册 [M]. 南京: 南京大学出版社, 1999.                 62496–62509.
              [7] 林书玉. 超声换能器的原理及设计 [M]. 北京: 科学出版社,              [21] 江灿, 武丹, 舒孟炯, 等. 采用矩阵束方法的复合材料圆管周
                 2004.                                             向导波频散数据获取 [J]. 声学学报, 2024, 49(3): 472–479.
              [8] Noble R A, Jones A D, Robertson T J, et al. Novel,  Jiang Can, Wu Dan, Shu Mengjiong, et al. Acquisition of
                 wide bandwidth, micromachined ultrasonic transduc-  dispersion features of circumferential guided wave in a cir-
                 ers[J]. IEEE Transactions on Ultrasonics, Ferroelectrics,  cular composite material pipe based on the matrix pencil
                 and Frequency Control, 2001, 48(6): 1495–1507.    method[J]. Acta Acustica, 2024, 49(3): 472–479.
   223   224   225   226   227   228   229   230   231   232   233