Page 255 - 《应用声学》2025年第3期
P. 255
第 44 卷 第 3 期 Vol. 44, No. 3
2025 年 5 月 Journal of Applied Acoustics May, 2025
⋄ 研究论文 ⋄
奥氏体不锈钢焊缝的优化相位相干加权因子
全聚焦成像实验分析 ∗
汪 翔 王 强 †
(中国计量大学能源环境与安全工程学院 杭州 310018)
摘要:针对奥氏体不锈钢焊缝存在粗大的柱状晶组织以及在整体上呈现出各向异性和不均匀性导致的超声衰
减严重的问题,该文提出一种优化相位相干加权因子的全聚焦成像算法 (OPCF-TFM),对奥氏体不锈钢焊缝
区进行实验。结果表明:利用 OPCF-TFM 算法能够较好地检测奥氏体不锈钢试块焊缝区内部的 ϕ1 mm 横通
孔缺陷的位置。该算法与全聚焦成像算法相比,缺陷的定位误差平均值可以降低 0.1308 mm,缺陷的宽度误差
平均值可以降低 0.1308 mm,缺陷的信噪比可以提升 −0.648 ∼ 4.387 dB 不等,表明 OPCF-TFM 算法检测奥
氏体不锈钢的焊缝区更有优势且有较好的应用前景。
关键词:奥氏体不锈钢;全聚焦算法;信号后处理;相位相干因子
中图法分类号: TG441.7 文献标识码: A 文章编号: 1000-310X(2025)03-0789-10
DOI: 10.11684/j.issn.1000-310X.2025.03.028
Experimental analysis of austenitic stainless steel welds with full focus
imaging by optimizing phase coherence weighting factor
WANG Xiang and WANG Qiang
(College of Energy Environment and Safety Engineering, China Jiliang University, Hangzhou 310018, China)
Abstract: The austenitic stainless steel weld has a coarse columnated crystal structure and presents anisotropy
and inhomogeneity on the whole, which leads to serious ultrasonic attenuation. In this paper, a total-focus
imaging algorithm which optimizes the phase coherence weighting factor(OPCF-TFM) is proposed to test the
weld zone of austenitic stainless steel. The results show that OPCF-TFM algorithm can well detect the location
of the ϕ1 mm cross through hole defects in the weld zone of austenitic stainless steel test block. Compared with
the full-focus imaging algorithm, the proposed algorithm can reduce the average positioning error of defects by
0.1308 mm, the average width error of defects by 0.1308 mm, and the SNR of defects can be improved from
−0.648 dB to 4.387 dB, indicating that the OPCF-TFM algorithm has more advantages in detecting the weld
zone of austenitic stainless steel and has a good application prospect.
Keywords: Austenitic steel weld; Total focusing method; Signal post-processing; Phase coherence factor
2024-01-05 收稿; 2024-03-07 定稿
浙江省重点研发计划项目 (2022C03179)
∗
作者简介: 汪翔 (1999– ), 男, 浙江湖州人, 硕士研究生, 研究方向: 相控阵超声无损检测技术。
† 通信作者 E-mail: qiangwang@cjlu.edu.cn