Page 175 - 201805
P. 175
第 37 卷 第 5 期 戚萌等: 大张角共焦换能器对振动声成像的影响 757
面换能器,其开口半径增大导致的张角增大均会使 geometry[J]. Ultrasonics, 2014, 54(2): 461–470.
焦点处声辐射力、切变位移增加,故增加开口半径以 [9] Giannoula A, Cobbold R S C. Narrowband shear wave
generation by a finite-amplitude radiation force: the fun-
增加张角为增加声辐射力和切变位移的有效手段。
damental component[J]. IEEE Trans. Ultrason. Ferro-
另与球面聚焦换能器为小张角时进行比较,发现大 electr. Freq. Control, 2008, 55(2): 343–358.
张角球面换能器声辐射力、切变位移均有显著增加, [10] Giannoula A, Cobbold R S C. Mapping the local shear
modulus and viscosity using a transient finite-amplitude
这也是大张角共焦换能器的优势。当中心频率增加
modulated radiation force[J]. Ultrasonics, 2011, 51(3):
时,轴向声辐射力、切变位移均出现先增加后减小 340–351.
的趋势,且轴向声辐射力的最大值出现区域向焦点 [11] Giannoula A, Cobbold R S C, Bezerianos A. Estimat-
后移,故选择适当的中心频率对获得大小合适区域 ing the local viscoelastic properties from dispersive shear
waves using time-frequency ridge analysis[J]. Ultrasonics,
有效的声辐射力及切变位移特别重要。此研究对运 2013, 53(2): 534–544.
用声辐射力进行的振动声成像提供了一定的理论 [12] Palmeri M L, Mcaleavey S A, Trahey G E, et al. Ultra-
支持。 sonic tracking of acoustic radiation force-induced displace-
ments in homogeneous media[J]. IEEE Trans. Ultrason.
Ferroelectr. Freq. Control, 2006, 53(7): 1300–1313.
参 考 文 献 [13] Torr G R. The acoustic radiation force[J]. Am. J. Phys,
1984, 52(52): 402–408.
[14] Chen S, Fatemi M, Kinnick R, et al. Comparison of stress
[1] He P Z, Xia R M, Duan S M, et al. Resolution of
field forming methods for vibro-acoustography[J]. IEEE
a vibro-acoustography system[J]. Appl. Acoust., 2006,
Trans. Ultrason. Ferroelectr. Freq. Control, 2004, 51(3):
25(5): 309–318.
313–321.
[2] Ophir J, Céspedes I, Ponnekanti H, et al. Elastography:
[15] Bercoff J, Tanter M, Muller M, et al. The role of viscos-
a quantitative method for imaging the elasticity of biolog-
ity in the impulse diffraction field of elastic waves induced
ical tissues[J]. Ultrason Imaging, 1991, 13(2): 111–134.
by the acoustic radiation force[J]. IEEE Trans. Ultrason.
[3] Céspedes I, Ophir J, Ponnekanti H, et al. Elastography:
Ferroelectr. Freq. Control, 2004, 51(11): 1523–1536.
elasticity imaging using ultrasound with application to
muscle and breast in vivo[J]. Ultrasonic Imaging, 1993, [16] Fatemi M, Greenleaf J F. Vibro-acoustography: an imag-
15(2): 73–88. ing modality based on ultrasound-stimulated acoustic
emission[J]. Proc. Natl. Acad. Sci. U.S.A., 1999, 96(12):
[4] Fatemi M, Greenleaf J F. Ultrasound-stimulated vibro-
acoustic spectrography[J]. Science, 1998, 280(5360): 82– 6603–6608.
85. [17] Lin K, Mclaughlin J R, Thomas A, et al. Two-dimensional
[5] Konofagou E E, Thierman J, Karjalainen T, et al. The shear wave speed and crawling wave speed recoveries from
temperature dependence of ultrasound-stimulated acous- in vitro prostate data[J]. J. Acoust. Soc. Am., 2011,
tic emission[J]. Ultrasound Med. Biol., 2002, 28(3): 130(1): 585–598.
331–338. [18] Bercoff J, Tanter M, Fink M. Supersonic shear imaging: a
[6] Konofagou E, Thierman J, Hynynen K. The use of new technique for soft tissue elasticity mapping[J]. IEEE
ultrasound-stimulated acoustic emission in the monitor- Trans. Ultrason. Ferroelectr. Freq. Control, 2004, 51(4):
ing of modulus changes with temperature[J]. Ultrasonics, 396–409.
2003, 41(5): 337–345. [19] Catheline S, Gennisson J L, Delon G, et al. Measuring
[7] Callé S, Remenieras J P, Bou M O, et al. Presence of non- of viscoelastic properties of homogeneous soft solid using
linear interference effects as a source of low frequency exci- transient elastography: an inverse problem approach[J].
tation force in vibro-acoustography[J]. Ultrasonics, 2002, J. Acoust. Soc. Am., 2004, 116(6): 3734–3741.
40(1): 873–878. [20] Hallaj I M, Cleveland R O, Hynynen K. Simulations of
[8] Giannoula A, Anastasions B. Analysis of the modulated the thermo-acoustic lens effect during focused ultrasound
acoustic radiation-force profile for a dual-beam confocal surgery[J]. J. Acoust. Soc. Am., 2001, 109(1): 2245–2253.