Page 175 - 201805
P. 175

第 37 卷 第 5 期               戚萌等: 大张角共焦换能器对振动声成像的影响                                           757


             面换能器,其开口半径增大导致的张角增大均会使                                geometry[J]. Ultrasonics, 2014, 54(2): 461–470.
             焦点处声辐射力、切变位移增加,故增加开口半径以                             [9] Giannoula A, Cobbold R S C. Narrowband shear wave
                                                                   generation by a finite-amplitude radiation force: the fun-
             增加张角为增加声辐射力和切变位移的有效手段。
                                                                   damental component[J]. IEEE Trans. Ultrason. Ferro-
             另与球面聚焦换能器为小张角时进行比较,发现大                                electr. Freq. Control, 2008, 55(2): 343–358.
             张角球面换能器声辐射力、切变位移均有显著增加,                            [10] Giannoula A, Cobbold R S C. Mapping the local shear
                                                                   modulus and viscosity using a transient finite-amplitude
             这也是大张角共焦换能器的优势。当中心频率增加
                                                                   modulated radiation force[J]. Ultrasonics, 2011, 51(3):
             时,轴向声辐射力、切变位移均出现先增加后减小                                340–351.
             的趋势,且轴向声辐射力的最大值出现区域向焦点                             [11] Giannoula A, Cobbold R S C, Bezerianos A. Estimat-
             后移,故选择适当的中心频率对获得大小合适区域                                ing the local viscoelastic properties from dispersive shear
                                                                   waves using time-frequency ridge analysis[J]. Ultrasonics,
             有效的声辐射力及切变位移特别重要。此研究对运                                2013, 53(2): 534–544.
             用声辐射力进行的振动声成像提供了一定的理论                              [12] Palmeri M L, Mcaleavey S A, Trahey G E, et al. Ultra-
             支持。                                                   sonic tracking of acoustic radiation force-induced displace-
                                                                   ments in homogeneous media[J]. IEEE Trans. Ultrason.
                                                                   Ferroelectr. Freq. Control, 2006, 53(7): 1300–1313.
                            参 考     文   献                       [13] Torr G R. The acoustic radiation force[J]. Am. J. Phys,
                                                                   1984, 52(52): 402–408.
                                                                [14] Chen S, Fatemi M, Kinnick R, et al. Comparison of stress
              [1] He P Z, Xia R M, Duan S M, et al.  Resolution of
                                                                   field forming methods for vibro-acoustography[J]. IEEE
                 a vibro-acoustography system[J]. Appl.  Acoust., 2006,
                                                                   Trans. Ultrason. Ferroelectr. Freq. Control, 2004, 51(3):
                 25(5): 309–318.
                                                                   313–321.
              [2] Ophir J, Céspedes I, Ponnekanti H, et al. Elastography:
                                                                [15] Bercoff J, Tanter M, Muller M, et al. The role of viscos-
                 a quantitative method for imaging the elasticity of biolog-
                                                                   ity in the impulse diffraction field of elastic waves induced
                 ical tissues[J]. Ultrason Imaging, 1991, 13(2): 111–134.
                                                                   by the acoustic radiation force[J]. IEEE Trans. Ultrason.
              [3] Céspedes I, Ophir J, Ponnekanti H, et al. Elastography:
                                                                   Ferroelectr. Freq. Control, 2004, 51(11): 1523–1536.
                 elasticity imaging using ultrasound with application to
                 muscle and breast in vivo[J]. Ultrasonic Imaging, 1993,  [16] Fatemi M, Greenleaf J F. Vibro-acoustography: an imag-
                 15(2): 73–88.                                     ing modality based on ultrasound-stimulated acoustic
                                                                   emission[J]. Proc. Natl. Acad. Sci. U.S.A., 1999, 96(12):
              [4] Fatemi M, Greenleaf J F. Ultrasound-stimulated vibro-
                 acoustic spectrography[J]. Science, 1998, 280(5360): 82–  6603–6608.
                 85.                                            [17] Lin K, Mclaughlin J R, Thomas A, et al. Two-dimensional
              [5] Konofagou E E, Thierman J, Karjalainen T, et al. The  shear wave speed and crawling wave speed recoveries from
                 temperature dependence of ultrasound-stimulated acous-  in vitro prostate data[J]. J. Acoust.  Soc.  Am., 2011,
                 tic emission[J]. Ultrasound Med.  Biol., 2002, 28(3):  130(1): 585–598.
                 331–338.                                       [18] Bercoff J, Tanter M, Fink M. Supersonic shear imaging: a
              [6] Konofagou E, Thierman J, Hynynen K. The use of   new technique for soft tissue elasticity mapping[J]. IEEE
                 ultrasound-stimulated acoustic emission in the monitor-  Trans. Ultrason. Ferroelectr. Freq. Control, 2004, 51(4):
                 ing of modulus changes with temperature[J]. Ultrasonics,  396–409.
                 2003, 41(5): 337–345.                          [19] Catheline S, Gennisson J L, Delon G, et al. Measuring
              [7] Callé S, Remenieras J P, Bou M O, et al. Presence of non-  of viscoelastic properties of homogeneous soft solid using
                 linear interference effects as a source of low frequency exci-  transient elastography: an inverse problem approach[J].
                 tation force in vibro-acoustography[J]. Ultrasonics, 2002,  J. Acoust. Soc. Am., 2004, 116(6): 3734–3741.
                 40(1): 873–878.                                [20] Hallaj I M, Cleveland R O, Hynynen K. Simulations of
              [8] Giannoula A, Anastasions B. Analysis of the modulated  the thermo-acoustic lens effect during focused ultrasound
                 acoustic radiation-force profile for a dual-beam confocal  surgery[J]. J. Acoust. Soc. Am., 2001, 109(1): 2245–2253.
   170   171   172   173   174   175   176   177   178   179   180