Page 53 - 201805
P. 53

第 37 卷 第 5 期                     白立新等: 液体薄层中的超声空化                                           635


              [2] Bai L, Xu W, Zhang Y, et al. Experimental investiga-  [16] ASTM D2979-01, Standard test method for pressure-
                 tions on the collapse of cavity cluster in high power ultra-  sensitive tack of adhesives using an inverted probe ma-
                 sound fields[J]. Proceedings of IEEE Ultrasonics Sympo-  chine[S].
                 sium, 2008: 942–945.                           [17] ASTM G32-85, Standard test method for cavitation ero-
              [3] Mettin  R.  Bubble  structures  in  acoustic  cavita-  sion using vibratory[S].
                 tion[M]//Doinikov A A. Bubble and particle dynamics in  [18] ASTM G32-10, Standard test method for cavitation ero-
                 acoustic fields: modern trends and applications. Kerala:  sion using vibratory[S].
                 Research Signpost, 2005: 1–36.                 [19] GB/T 6383-2009, 振动空蚀试验方法 [S].
              [4] Moussatov A, Granger C, Dubus B. Cone-like bub-  [20] Wit L D G. Method for ultrasonic cleaning of textiles:
                 ble formation in ultrasonic cavitation field[J]. Ultrason.  European Patent Application, 0392586A1[P]. 1990-10-17.
                 Sonochem., 2003, 10(4): 191–195.               [21] Perincek S, Uzgur A E, Duran K, et al. Design parame-
              [5] Dubus B, Vanhille C, Campos-Pozuelo C. et al. On the  ter investigation of industrial size ultrasound textile treat-
                 physical origin of conical bubble structure under an ultra-  ment bath[J]. Ultrason. Sonochem., 2009, 16(1): 184–189.
                 sonic horn[J]. Ultrason. Sonochem., 2010, 17(5): 810–818.  [22] Vouters M, Rumeau P, Tierce P, et al. Ultrasounds: an in-
              [6] Louisnard O. A simple model of ultrasound propagation  dustrial solution to optimize costs, environmental requests
                 in a cavitating liquid. Part II: primary Bjerknes force and  and quality for textile finishing[J]. Ultrason. Sonochem.,
                 bubble structures[J]. Ultrason. Sonochem., 2012, 19(1):  2004, 11(1): 33–38.
                 66–76.                                         [23] Gallego-Juárez J A, Nájera G, Rodriguez G, et al. Process
              [7] Bai L, Xu W, Deng J, et al.  Generation and control  and device for the continuous ultrasound washing of tex-
                 of acoustic cavitation structure[J]. Ultrason. Sonochem.,  tiles: European Patent Application, EP1010796[P]. 2002-
                 2014, 21(5): 1696–1706.                           08-21.
              [8] Parlitz U, Mettin R, Luther S, et al.  Lauterborn,  [24] Moholkar V S, Warmoeskerken M M C G. Investiga-
                 Spatio-temporal dynamics of acoustic cavitation bubble  tions in mass transfer enhancement in textiles with ul-
                 clouds[J]. Philos.  Trans.  R. Soc.  Lond.  A, 1999,  trasound[J]. Chemical Engineering Science, 2003, 59(2):
                 357(1757): 313–334.                               299–311.
              [9] Mettin R, Luther S, Ohl C D, et al. Acoustic cavitation  [25] Gallego-Juarez J A, Riera E, Acosta V, et al. Ultrasonic
                 structures and simulations by a particle model[J]. Ultra-  system for continuous washing of textiles in liquid lay-
                 son. Sonochem., 1999, 6(1/2): 25–29.              ers[J]. Ultrason. Sonochem., 2010, 17(1): 234–238.
             [10] Bai L, Deng J, Li C, et al. Acoustic cavitation struc-  [26] Moussatov A, Granger C, Dubus B. Ultrasonic cavitation
                 tures produced by artificial implants of nuclei[J]. Ultrason.  in thin liquid layers[J]. Ultrason. Sonochem., 2005, 12(6):
                 Sonochem., 2014, 21(1): 121–128.                  415–422.
             [11] Bai L, Ying C, Li C, et al. The structures and evolution  [27] García-Atance Fatjó G, Torres Pérez A, Hadfield M. Ex-
                 of Smoker in an ultrasonic field[J]. Ultrason. Sonochem.,  perimental study and analytical model of the cavitation
                 2012,19(4): 762–766.                              ring region with small diameter ultrasonic horn[J]. Ultra-
             [12] Mettin R, Koch P, Krefting D, et al. Advanced observa-  son. Sonochem., 2011, 18(1): 73–79.
                 tion and modeling of an acoustic cavitation structure[C]//  [28] Bai L, Lin W, Wu P, et al. Memory effect and redistribu-
                 Rudenko O V, Sapozhnikov O A. Nonlinear acoustics at  tion of cavitation nuclei in a thin liquid layer[J]. Ultrason.
                 the beginning of the 21st Century. Proceedings of the 16th  Sonochem., 2016, 32: 213–217.
                 International Symposium on Nonlinear Acoustics ISNA-  [29] Bai L, Chen X, Zhu G, et al.  Surface tension and
                 16, Faculty of Physics, MSU, Moscow, 2002, 2: 1003–1006.  quasi-emulsion of cavitation bubble cloud[J]. Ultrason.
             [13] Krefting D, Mettin R, Lauterborn W. High-speed obser-  Sonochem., 2017, 35(A): 405–414.
                 vation of acoustic cavitation erosion in multibubble sys-  [30] Wu P, Bai L, Lin W, et al. Stability of cavitation struc-
                 tems[J]. Ultrason. Sonochem., 2004, 11(3): 119–123.  tures in ultrasonic field[J]. Ultrason. Sonochem., 2017, 38:
             [14] Dowson D, Taylor C M. Cavitation in journal bearings[J].  75–83.
                 Ann. Rev. Fluid Mech., 1979, 11: 35–66.        [31] Bai L, Wu P, Liu H, et al. Rod-shaped cavitation bub-
             [15] Wetzel F. The characterization of pressure-sensitive adhe-  ble structure in ultrasonic field[J]. Ultrason. Sonochem.,
                 sives[J]. ASTM Bulletin, 1957, 221: 64–68.        2018, 44: 184–195.
   48   49   50   51   52   53   54   55   56   57   58