Page 116 - 201806
P. 116

946                                                                                 2018 年 11 月


                 Hou Yimin, Zhou Huiqiong, Wang Zhengyi. Overview of  (ICASSP), 2016 IEEE International Conference on.
                 speech recognition based on deep leaarning[J]. Application  IEEE, 2016: 4955–4959.
                 Research of Computers, 2017, 34(8): 2241–2246.  [10] Sainath T N, Kingsbury B, Saon G, et al. Deep con-
              [3] Li J, Mohamed A, Zweig G, et al.  LSTM time      volutional neural networks for large-scale speech tasks[J].
                 and frequency recurrence for automatic speech recogni-  Neural Networks, 2015, 64: 39–48.
                 tion[C]//Automatic Speech Recognition and Understand-  [11] Yu D, Xiong W, Droppo J, et al. Deep convolutional neu-
                 ing, IEEE, 2016: 187–191.                         ral networks with layer-wise context expansion and atten-
              [4] Mohamed A, Dahl G, Hinton G. Deep belief networks for  tion[C]// Interspeech, 2016: 17–21.
                 phone recognition[C]//Nips Workshop on Deep Learning  [12] Qian Y, Bi M, Tan T, et al. Very deep convolutional
                 for Speech Recognition and Related Application, 2009:  neural networks for noise robust speech recognition[J].
                 39.                                               IEEE/ACM Transactions on Audio Speech & Language
              [5] Sainath T N, Vinyals O, Senior A, et al. Convolutional,  Processing, 2016, 24(12): 2263–2276.
                 long short-term memory, fully connected deep neural net-  [13] 梁玉龙, 屈丹, 李真, 等. 基于卷积神经网络的维吾尔语语音
                 works[C]//IEEE International Conference on Acoustics,  识别 [J]. 信息工程大学学报, 2017, 18(1): 44–50.
                 Speech and Signal Processing IEEE, 2015: 4580–4584.  Liang Yulong, Qu Dan, Li Zhen, et al. Uyghur speech
              [6] 孙艳丰, 齐光磊, 胡永利, 等. 基于改进 Fisher 准则的深度              recognition based on convolutional neural network[J].
                 卷积神经网络识别算法 [J]. 北京工业大学学报, 2015, 41(6):            Journal of Information Engineering University, 2017,
                 835–841.                                          18(1): 44–50.
                 Sun Yanfeng, Qi Guanglei, Hu Yongli, et al. Deep con-  [14] 黄玉蕾, 罗晓霞, 刘笃仁. MFSC 系数特征局部有限权重共享
                 volution neural network recognition algorithm based on  CNN 语音识别 [J]. 控制工程, 2017, 24(7): 1507–1513.
                 improved Fisher criterion[J]. Journal of Beijing University  Huang Yulei, Luo Xiaoxia, Liu Duren.  Local finite
                 of Technology, 2015, 41(6): 835–841.              weight sharing of MFSC coefficients based CNN speech
              [7] Sainath T N, Mohamed A R, Kingsbury B, et al. Deep  recognition[J]. Control Engineering of China, 2017, 24(7):
                 convolutional neural networks for LVCSR[C]//IEEE In-  1507–1513.
                 ternational Conference on Acoustics, Speech and Signal  [15] Hori T, Watanabe S, Zhang Y, et al. Advances in joint
                 Processing, IEEE, 2013: 8614–8618.                CTC-attention based end-to-end speech recognition with
              [8] Huang J T, Li J, Gong Y. An analysis of convolutional  a deep CNN encoder and RNN-LM[J]. arXiv preprint
                 neural networks for speech recognition[C]//IEEE Inter-  arXiv: 1706.02737, 2017.
                 national Conference on Acoustics, Speech and Signal Pro-  [16] Zeiler S, Nicheli R, Ma N, et al.  Robust audiovi-
                 cessing, IEEE, 2015: 4989–4993.                   sual speech recognition using noise-adaptive linear dis-
              [9] Sercu T, Puhrsch C, Kingsbury B, et al.  Very    criminant analysis[C]//IEEE International Conference on
                 deep multilingual convolutional neural networks for  Acoustics, Speech and Signal Processing, IEEE, 2016:
                 LVCSR[C]//Acoustics, Speech and Signal Processing  2797–2801.
   111   112   113   114   115   116   117   118   119   120   121