Page 12 - 201806
P. 12
842 2018 年 11 月
radar synthetic aperture imaging based on Stolt migra-
5 结论 tion[J]. Chinese Journal of Radio Science, 2004, 19(3):
316–320.
(1) 本文第一次使用波数成像算法应用在实际 [5] Hunter A J, Drinkwater B W, Wilcox P D. The wavenum-
工程中钢轨模型上,取得了快速成像的结果,更好地 ber algorithm for full-matrix imaging using an ultrasonic
array[J]. IEEE Transactions on Ultrasonics, Ferroelectrics,
反映了缺陷深度和形状大小,这种成像算法有望适 and Frequency Control, 2008, 55(11): 2450–2462.
用工程中的实时无损检测系统。 [6] 严刚, 周丽. 基于频率 -波数域偏移的损伤被动成像识别研
(2) 从理论上分析了全聚焦成像算法和波数成 究 [J]. 固体力学学报, 2011, S1(32): 273–279.
Yan Gang, Zhou Li. Passive imaging and identifica-
像算法性能,即体现在运算复杂度方面。文中分析和 tion of damages using migration technique in frequency-
对比了两种不同成像方法的运算量,而实际的运算 wavenumber domain[J]. Chinese Journal of Solid Mechan-
ics, 2011, S1(32): 273–279.
性能依赖于实际的具体操作,本实验采用 32个阵元
[7] 周子超, 苏小敏. 基于 Stolt 插值的微波近场成像方法研究 [J].
的探头捕获的全矩阵数据,研究成果基于 win10x64 现代电子技术, 2011, 34(17): 28–30.
系统 8 G 内存的配置,在 MATLAB2015b环境下全 Zhou Zichao, Su Xiaomin. Near-field microwave imaging
based on Stolt interpolation[J]. Modern Electronics Tech-
聚焦成像算法对钢轨缺陷重建耗时 195.691486 s,
nique, 2011, 34(17): 28–30.
而波数算法耗时 8.784266 s,运算速度快 22 倍。波 [8] Moghimirad E, Villagómez H C A, Mahloojifar A, et al.
数算法程序中对数据进行了插值,为了避免伪像的 Synthetic aperture ultrasound Fourier beamformation us-
ing virtual sources[J]. IEEE Transactions on Ultrason-
出现,对全矩阵进行了补零操作,影响了计算效率,
ics, Ferroelectrics, and Frequency Control, 2016, 63(12):
理论上计算效率应该提高32倍。 2018–2030.
(3)自发自收模式下,波数成像算法就能够对缺 [9] Fan C, Pan M, Luo F, et al. Multi-frequency time-
reversal-based imaging for ultrasonic nondestructive eval-
陷进行最快速度成像,特别适合应用各向同性材料
uation using full matrix capture[J]. IEEE Transactions on
中缺陷的快速定位。 Ultrasonics, Ferroelectrics, and Frequency Control, 2014,
(4)从点散函数对比的结果来看,全聚焦方法聚 61(12): 2067–2074.
[10] Wiley C A. Synthetic aperture radars: a paradigm for
焦点分布不均匀,不能够正确反映缺陷的形状,尤其
technology evolution[J]. IEEE Transactions on Aerospace
钢轨大缺陷 (2 个波长左后) 的情况下,重建的缺陷 and Electronic Systems, 1985, AES-21(3): 440–443.
出现纵向拉长的现象,其横向分辨率远不如波数成 [11] Li Z, Wang J, Liu Q H. Frequency-domain backprojection
algorithm for synthetic aperture radar imaging[J]. IEEE
像算法。波数算法的聚焦点均匀分布,分辨率很高,
Geoscience and Remote Sensing Letters, 2015, 12(4):
能够克服全聚焦的以上缺点,更加精准地呈现缺陷 905–909.
的形状,且不会发生变形。 [12] Han Z, Peng H, Zhao X. Sector-scanning 3D ultrasound
imaging in frequency domain with 1D array transducer[J].
Ultrasonics, 2017, 76: 2834.
[13] Han Z, Peng H, Zhao X, et al. 3D ultrasound imaging in
参 考 文 献
frequency domain based on concepts of array beam and
synthetic aperture[J]. Ultrasonics, 2018, 84: 254–263.
[1] Stolt R H. Migration by Fourier transform[J]. Geophysics, [14] Muller A, Robertson-Welsh B, Gaydecki P, et al. Struc-
1978, 43(1): 23–48. tural health monitoring using Lamb wave reflections and
[2] Cafforio C, Prati C, Rocca F. SAR data focusing us- total focusing method for image reconstruction[J]. Applied
ing seismic migration techniques[J]. IEEE Transactions on Composite Materials, 2017, 24(2): 553–573.
Aerospace and Electronic Systems, 1991, 27(2): 194–207. [15] Hu H, Du J, Xu N, et al. Ultrasonic sparse-TFM imag-
[3] Callow H J, Hayes M P, Gough P T. Wavenumber domain ing for a two-layer medium using genetic algorithm opti-
reconstruction of SAR/SAS imagery using single trans- mization and effective aperture correction[J]. NDT & E
mitter and multiple receiver geometry[J]. Electronics Let- International, 2017, 90: 24–32.
ters, 2002, 38(7): 336–337. [16] Moghimirad E, Mahloojifar A, Asl B M. Computational
[4] 张春城, 周正欧. 基于 Stolt 偏移的探地雷达合成孔径成像研 complexity reduction of synthetic aperture focus in ultra-
究 [J]. 电波科学学报, 2004, 19(3): 316–320. sound imaging using frequency-domain reconstruction[J].
Zhang Chuncheng, Zhou Zheng’ou. Ground penetrating Ultrasonic Imaging, 2015, 38(3): 175–193.