Page 12 - 应用声学2019年第2期
P. 12

158                                                                                  2019 年 3 月


             形产生的弹性波,其频带为 100 kHz∼300 kHz。因                      [8] Li X. A brief review: acoustic emission method for tool
             此,接下来对采集到的 AE 信号进行 db5 小波软阈                           wear monitoring during turning[J]. International Journal
                                                                   of Machine Tools & Manufacture, 2002, 42(2): 157–165.
             值降噪。对于经过降噪的 AE 信号进行分帧处理并
                                                                 [9] Yao Y, Li X, Yuan Z. Tool wear detection with fuzzy clas-
             提取每帧信号的 8 个特征,组成 8 维 AE 数据集。最                         sification and wavelet fuzzy neural network[J]. Interna-
             后使用 AE 数据集作为训练数据集,并通过弱极限                              tional Journal of Machine Tools & Manufacture, 1999,
                                                                   39(10): 1525–1538.
             近似采样算法学习HDP-HSMM。其学习结果表明,
                                                                [10] Li X, Dong S, Yuan Z. Discrete wavelet transform for tool
             该方法能够有效识别砂轮在加工过程中的状态变                                 breakage monitoring[J]. International Journal of Machine
             化并能对砂轮的钝化程度进行分级。其在测试数据                                Tools & Manufacture, 1999, 39(12): 1935–1944.
                                                                [11] Williams R V. Acoustic emission[J]. Journal of Mechanical
             集上具有93.7%的精度,具有很高的工业应用价值。
                                                                   Design, 1982: 25–27.
                 HDP-HSMM结合了显式时间分布的半马尔可                         [12] 唐英, 顾崇衔, 孙荣平, 等. 金属切削过程声发射机理 [J]. 北
             夫模型和贝叶斯非参数技术,不仅可以对有监督和                                京科技大学学报, 1995, 17(5): 439–443.
             无监督的非马尔可夫时序数据学习,也可以对更大                                Tang Ying, Gu Chongxian, Sun Rongping, et al. Acous-
                                                                   tic emission mechanism in cutting process[J]. Journal of
             层次的模型进行推理。通过弱极限近似采样算法可                                University of Science and Technology Beijing, 1995, 17(5):
             以快速准确地对该模型进行训练。本文已经证明了                                439–443.
                                                                [13] 刘希强, 杨京, 程建春, 等. 磨削加工过程的声发射机理研
             该方法在磨削砂轮不同钝化状态识别中的有效性,
                                                                   究 [C]. 中国声学学会青年学术会议会议, 2015.
             这些方法也将可以为更多连续时间序列问题提供                              [14] 张淑清, 上官寒露, 袁计委, 等. 基于内禀模态能量比呼
             解决方案。                                                 吸信号特征参数提取方法 [J]. 仪器仪表学报, 2010, 31(8):
                                                                   1706–1711.
                                                                   Zhang Shuqing, Shangguan Hanlu, Yuan Jiwei, et al.
                            参 考     文   献                          Study on the extraction method of characteristic parame-
                                                                   ters of respiration signals based on intrinsic mode energy
              [1] Kurada S, Bradley C. A review of machine vision sensors  ratio[J]. Chinese Journal of Scientific Instrument, 2010,
                 for tool condition monitoring[J]. Computers in Industry,  31(8): 1706–1711.
                 1997, 34(1): 55–72.                            [15] Wu H, Yu Z, Yan W. Real-time FDM machine condi-
              [2] Mokbel A A, Maksoud T M A. Monitoring of the condi-  tion monitoring and diagnosis based on acoustic emission
                 tion of diamond grinding wheels using acoustic emission  and hidden semi-Markov model[J]. International Journal
                 technique[J]. Journal of Materials Processing Technology,  of Advanced Manufacturing Technology, 2017, 90(5–8):
                 2000, 101(1): 292–297.                            2027–2036.
              [3] Hwang T W, Whitenton E P, Hsu N N, et al. Acous-  [16] Xu Z, Xuan J, Shi T, et al. A novel fault diagnosis method
                 tic emission monitoring of high speed grinding of silicon  of bearing based on improved fuzzy ARTMAP and mod-
                 nitride[J]. Ultrasonics, 2000, 38(1): 614–619.    ified distance discriminant technique[J]. Expert Systems
              [4] Lezanski P. An intelligent system for grinding wheel  with Applications, 2009, 36(9): 11801–11807.
                 condition monitoring[J]. Journal of Materials Processing  [17] Johnson M J, Willsky A S. Bayesian nonparametric hid-
                 Technology, 2001, 109(3): 258–263.                den semi-Markov models[J]. Journal of Machine Learning
              [5] Hosokawa A, Mashimo K, Yamada K, et al. Evaluation  Research, 2013, 14(1): 673–701.
                 of grinding wheel surface by means of grinding sound dis-  [18] Yu S Z. Hidden semi-Markov models[J]. Artificial Intelli-
                 crimination[J]. Jsme International Journal, 2004, 47(1):  gence, 2010, 174(2): 215–243.
                 52–58.                                         [19] Teh Y W, Jordan M I, Beal M J, et al. Hierarchical dirich-
              [6] Kwak J S, Ha M K. Detection of dressing time using the  let processes[J]. Journal of the American Statistical Asso-
                 grinding force signal based on the discrete wavelet decom-  ciation, 2006, 101(476): 1566–1581.
                 position[J]. International Journal of Advanced Manufac-  [20] Fox E B. Bayesian nonparametric learning of complex dy-
                 turing Technology, 2004, 23(1–2): 87–92.          namical phenomena[D]. Cambridge, MA: MIT, 2009.
              [7] Liao T W, Ting C F, Qu J, et al. A wavelet-based method-  [21] Fox E B, Sudderth E B, Jordan M I, et al. An HDP-HMM
                 ology for grinding wheel condition monitoring[J]. Interna-  for systems with state persistence[C]. 25th International
                 tional Journal of Machine Tools & Manufacture, 2007,  Conference on Machine Learning (ICML) Helsinki, Fabi-
                 47(3): 580–592.                                   aninkatu, July, 2008: 312–319.
   7   8   9   10   11   12   13   14   15   16   17