Page 61 - 应用声学2019年第2期
P. 61
第 38 卷 第 2 期 陈振华等: 微小层片型缺陷的超声非线性区域检测技术 207
强、信息丰富的优势。 detection in plates based on theory of Hertz stress[J]. Jour-
(2) 基于区域检测技术提出相对非线性系数均 nal of Mechanical Engineering, 2017, 53(12): 60–69.
[8] 敦怡, 师小红, 王广龙, 等. 微纳米级裂纹的非线性超声检
值及波动系数可检测扁钢中微小的层片型或点状
测 [J]. 光学精密工程, 2011, 19(1): 132–137.
缺陷。其中,非线性波动系数比非线性系数均值对 Dun Yi, Shi Xiaohong, Wang Ganglong, et al. Nonlinear
缺陷区域更敏感,可优先选择非线性波动系数检测 ultrasonic test of micro-nano crack[J]. Optics and Preci-
sion Engineering, 2011, 19(1): 132–137.
微小薄层缺陷。
[9] 陈振华, 史耀武, 赵海燕, 等. 微小缺陷的非线性超声检测及
(3)相关性分析可知,非线性超声检测系数无法 其成像技术 [J] 声学学报, 2010, 35(1): 9–13.
检测间隙较大的层片型缺陷,但对微小的薄层型缺 Chen Zhenhua, Shi Yaowu, Zhao Haiyan, et al. Nonlin-
ear ultrasonic testing and imaging for tiny flaw[J]. Acta
陷非常敏感,结合相对非线性系数均值及波动系数
Acustica, 2010, 35(1): 9–13.
可检测微小薄层型缺陷在检测区域的分布状况。 [10] 吴斌, 颜丙生, 何存富, 等. AZ31 镁合金早期力学性能退化非
线性超声检测 [J]. 航空材料学报, 2011, 31(1): 87–92.
Wu Bin, Yan Bingsheng, He Cunfu, et al. AZ31 mag-
参 考 文 献 nesium early mechanical performance degradation nonde-
structive testing using nonlinear ultrasonic[J]. Journal of
Aeronautical Materials, 2011, 31(1): 87–92.
[1] Wang Q Y, Bathias C, Kawagoishi N, et al. Effect of [11] Cantrell J H. Crystalline structure and symmetry de-
inclusion on subsurface crack initiation and gigacycle fa- pendence of acoustic nonlinearity parameters[J]. Japanese
tigue strength[J]. International Journal of Fatigue, 2002, Journal of Applied Physics, 1994, 76(6): 3372–3380.
24(12): 1269–1274. [12] Breazeale M A, Philip J. Determination of third or-
[2] Prasannavenkatesan R, Zhang J, Mcdowell D L, et al. 3D der elastic constants from ultrasonic harmonic generation
modeling of subsurface fatigue crack nucleation potency measurements[J]. Physical Acoustics, 1984, 17: 1–60.
of primary inclusions in heat treated and shot peened [13] 赵娜. 金属疲劳微损伤的非线性超声检测技术研究 [D]. 太原:
martensitic gear steels[J]. International Journal of Fa- 中北大学, 2015.
tigue, 2009, 31(7): 1176–1189. [14] 江念, 王召巴, 陈友兴. 脉冲反转和小波变换在非线性超声检
[3] Prasannavenkatesan R, Przybyla C P, Salajegheh N, et 测中的应用 [J]. 仪表技术与传感器, 2015(12): 97–99.
al. Simulated extreme value fatigue sensitivity to inclu- Jiang Nian, Wang Zhaoba, Chen Youxing. Application
sions and pores in martensitic gear steels[J]. Engineering of pulse-inversion technique and wavelet transform for
Fracture Mechanics, 2011, 78(6): 1140–1155. nonlinear ultrasonic nondestructive testing[J]. Instrument
[4] Shin S Y, Lee H, Han S Y, et al. Correlation of mi- Technique and Sensor, 2015(12): 97–99.
crostructure and cracking phenomenon occurring during [15] 颜丙生, 吴斌, 李佳锐, 等. 金属材料力学性能退化非线性超声
hot rolling of lightweight steel plates[J]. Metallurgical and 检测实验系统优化 [J]. 仪表技术与传感器, 2011(2): 95–98.
Materials Transactions, 2010, 41A(1): 138–148. Yan Bingsheng, Wu Bin, Li Jiarui, et al. System opti-
[5] 李述亭, 郑国渠, 黄群. 钢锻件超声检测缺陷定性分析研究 [J]. mization of metal material mechanical performance degra-
钢铁研究学报, 2013, 25(5): 59–62. dation testing using nonlinear ultrasonic[J]. Instrument
Li Shuting, Zheng Guoqu, Huang Qun. Qualitative study Technique and Sensor, 2011(2): 95–98.
on ultrasonic testing of steel forgings defect[J]. Journal of [16] Kajetan Dziedziech, Lukasz Pieczonka, Piotr Kijanka,
Iron and Steel Research, 2013, 25(5): 59–62. et al. Enhanced nonlinear crack-wave interactions for
[6] 张凤戈, 张义文, 陶宇. 镍基粉末高温合金的超声无损检测 [J]. structural damage detection based on guided ultrasonic
粉末冶金工业, 2004, 14(3): 16–19. waves[J]. Structural Control and Health Monitoring, 2016,
Zhang Fengge, Zhang Yiwen, Tao Yu. Ultrasonic nonde- 23: 1108–1120.
structive testing of P/M nickel base superalloy[J]. Powder [17] 程海进, 廖林清, 屈翔, 等. 方案评价过程中单个专家的评价
Metallurgy Industry, 2004, 14(3): 16–19. 信度分析 [J]. 重庆工学院学报: 自然科学版, 2009, 23(12):
[7] 焦敬品, 孟祥吉, 吕洪涛, 等. 基于赫兹接触的板中微裂纹非 41–43, 61.
线性兰姆波检测方法研究 [J]. 机械工程学报, 2017, 53(12): Cheng Haijin, Liao Linqing, Qu Xiang, et al. Analysis on
60–69. evaluation reliability of a single expert during process of
Jiao Jingpin, Meng Xiangji, Lyu Hongtao, et al. Nonlin- approach evaluation[J]. Journal of Chongqing Institute of
ear Lamb wave second harmonic technique for micro-crack Technology: Natural Science, 2009, 23(12): 41–43, 61.