Page 10 - 201903
P. 10
292 2019 年 5 月
C扫描测试结果可以更加直观地反映试块表面 [4] Kelly S P, Farlow R, Hayward G. Applications of through-
缺陷的状况。观察图 8(a) 及图 8(b),可以很容易确 air ultrasound for rapid NDE scanning in the aerospace
industry[J]. IEEE Transactions on Ultrasonics, Ferro-
定不同缺陷的位置。其中,色柱表示信号幅值,单
electrics, and Frequency Control, 1996, 43(4): 581–591.
位为 mV。从图 8(a) 中可以清晰地辨别出五条缺陷, [5] Ogi H, Hirao M, Honda T. Ultrasonic attenuation and
并且从左向右,可以清楚辨别出缺陷的宽度在逐渐 grain-size evaluation using electromagnetic acoustic res-
变宽,这与试块 1 表面缺陷的特征是相一致的。从 onance[J]. Journal of the Acoustical Society of America,
1995, 98(1): 458–464.
图8(b) 中也可以清晰地辨别出五条缺陷,并且五条
[6] Kenderian S, Djordjevic B B, Green R E. Sensitivity of
缺陷具有相同的宽度。同时,随着缺陷深度的不断 point- and line-source laser-generated acoustic wave to
增大,缺陷底部与超声换能器发射面的距离也在增 surface flaws[J]. IEEE Transactions on Ultrasonics, Ferro-
electrics, and Frequency Control, 2003, 50(8): 1057–1064.
大,缺陷底部越来越偏离聚焦空气耦合超声换能器
[7] Blomme E, Bulcaen D, Declercq F. Air-coupled ultra-
的焦斑位置,从缺陷底部反射回来的缺陷波信号逐 sonic NDE: experiments in the frequency range 750 kHz–
渐变小,这与试块2表面缺陷的特征也是一致的。 2 MHz[J]. NDT&E International, 2002, 35(7): 417–426.
[8] Hutchins D, Burrascano P, Davis L, et al. Coded wave-
5 结论 forms for optimised air-coupled ultrasonic nondestructive
evaluation [J]. Ultrasonics, 2014, 54(7): 1745–1759.
作为精细检测和精准定位的关键器件,空气耦 [9] 卞加聪, 胡文祥, 周八妹. 多匹配层空气耦合压电超声换能
器 [J]. 应用声学, 2018, 37(1): 96–100.
合超声换能器已经广泛应用于各个工业领域。本文 Bian Jiacong, Hu Wenxiang, Zhou Bamei. Multi-element
以 1-3 型压电复合材料及双匹配层结构为基础,制 layer air-coupled piezocomposite ultrasonic transducer [J].
作了工作频率为440 kHz的多基元聚焦空气耦合超 Journal of Applied Acoustics, 2018, 37(1): 96–100.
[10] Delrue S, Abeele K V D, Blomme E, et al. Two-
声换能器,并对其声场分布特性及性能进行了测试
dimensional simulation of the single-sided air-coupled ul-
评估。测试结果表明该空气耦合超声换能器具有优 trasonic pitch-catch technique for non-destructive test-
良的性能。这为后续高频率的空气耦合超声换能器 ing[J]. Ultrasonics, 2010, 50(2): 188–196.
的研发制作奠定了基础。 [11] Chimenti D E. Review of air-coupled ultrasonic materials
characterization[J]. Ultrasonics, 2014, 54(7): 1804–1816.
[12] 童立坤, 项延训, 邓明晰, 等. 铁电驻极体空气耦合声换能器
参 考 文 献 的研制 [J]. 声学技术, 2018, 37(5): 507–510.
Tong Likun, Xiang Yanxun, Deng Mingxi, et al. Develop-
[1] Khairi M T M, Ibrahim S, Yunus M A M, et al. Contact ment of EMFi-based air-coupled ultrasonic transducer[J].
and non-contact ultrasonic measurement in the food in- Technical Acoustics, 2018, 37(5): 507–510.
dustry: a review[J]. Measurement Science & Technology, [13] 杜功焕, 朱哲民, 龚秀芬. 声学基础 [M]. 南京: 南京大学出版
2016, 27(1): 012001. 社, 2001: 344–347.
[2] Dahl T, Ealo J L, Bang H J, et al. Applications of air- [14] 孔涛, 徐春广, 张运涛, 等. 空气耦合超声换能器声场计算与
borne ultrasound in human-computer interaction[J]. Ul- 测量研究 [J]. 机械工程学报, 2011, 47(22): 19–24.
trasonics, 2014, 54(7): 1912–1921. Kong Tao, Xu Chunguang, Zhang Yuntao, et al. In-
[3] Waag G, Hoff L, Norli P. Air-coupled ultrasonic through- vestigation of acoustic field calculation and measurement
transmission thickness measurements of steel plates[J]. Ul- method for air-coupled ultrasonic transducer[J]. Journal
trasonics, 2015, 56: 332–339. of Mechanical Engineering, 2011, 47(22): 19–24.