Page 10 - 201903
P. 10

292                                                                                  2019 年 5 月


                 C扫描测试结果可以更加直观地反映试块表面                            [4] Kelly S P, Farlow R, Hayward G. Applications of through-
             缺陷的状况。观察图 8(a) 及图 8(b),可以很容易确                         air ultrasound for rapid NDE scanning in the aerospace
                                                                   industry[J]. IEEE Transactions on Ultrasonics, Ferro-
             定不同缺陷的位置。其中,色柱表示信号幅值,单
                                                                   electrics, and Frequency Control, 1996, 43(4): 581–591.
             位为 mV。从图 8(a) 中可以清晰地辨别出五条缺陷,                        [5] Ogi H, Hirao M, Honda T. Ultrasonic attenuation and
             并且从左向右,可以清楚辨别出缺陷的宽度在逐渐                                grain-size evaluation using electromagnetic acoustic res-
             变宽,这与试块 1 表面缺陷的特征是相一致的。从                              onance[J]. Journal of the Acoustical Society of America,
                                                                   1995, 98(1): 458–464.
             图8(b) 中也可以清晰地辨别出五条缺陷,并且五条
                                                                 [6] Kenderian S, Djordjevic B B, Green R E. Sensitivity of
             缺陷具有相同的宽度。同时,随着缺陷深度的不断                                point- and line-source laser-generated acoustic wave to
             增大,缺陷底部与超声换能器发射面的距离也在增                                surface flaws[J]. IEEE Transactions on Ultrasonics, Ferro-
                                                                   electrics, and Frequency Control, 2003, 50(8): 1057–1064.
             大,缺陷底部越来越偏离聚焦空气耦合超声换能器
                                                                 [7] Blomme E, Bulcaen D, Declercq F. Air-coupled ultra-
             的焦斑位置,从缺陷底部反射回来的缺陷波信号逐                                sonic NDE: experiments in the frequency range 750 kHz–
             渐变小,这与试块2表面缺陷的特征也是一致的。                                2 MHz[J]. NDT&E International, 2002, 35(7): 417–426.
                                                                 [8] Hutchins D, Burrascano P, Davis L, et al. Coded wave-
             5 结论                                                  forms for optimised air-coupled ultrasonic nondestructive
                                                                   evaluation [J]. Ultrasonics, 2014, 54(7): 1745–1759.
                 作为精细检测和精准定位的关键器件,空气耦                            [9] 卞加聪, 胡文祥, 周八妹. 多匹配层空气耦合压电超声换能
                                                                   器 [J]. 应用声学, 2018, 37(1): 96–100.
             合超声换能器已经广泛应用于各个工业领域。本文                                Bian Jiacong, Hu Wenxiang, Zhou Bamei. Multi-element
             以 1-3 型压电复合材料及双匹配层结构为基础,制                             layer air-coupled piezocomposite ultrasonic transducer [J].
             作了工作频率为440 kHz的多基元聚焦空气耦合超                             Journal of Applied Acoustics, 2018, 37(1): 96–100.
                                                                [10] Delrue S, Abeele K V D, Blomme E, et al.  Two-
             声换能器,并对其声场分布特性及性能进行了测试
                                                                   dimensional simulation of the single-sided air-coupled ul-
             评估。测试结果表明该空气耦合超声换能器具有优                                trasonic pitch-catch technique for non-destructive test-
             良的性能。这为后续高频率的空气耦合超声换能器                                ing[J]. Ultrasonics, 2010, 50(2): 188–196.
             的研发制作奠定了基础。                                        [11] Chimenti D E. Review of air-coupled ultrasonic materials
                                                                   characterization[J]. Ultrasonics, 2014, 54(7): 1804–1816.
                                                                [12] 童立坤, 项延训, 邓明晰, 等. 铁电驻极体空气耦合声换能器
                            参 考     文   献                          的研制 [J]. 声学技术, 2018, 37(5): 507–510.
                                                                   Tong Likun, Xiang Yanxun, Deng Mingxi, et al. Develop-
              [1] Khairi M T M, Ibrahim S, Yunus M A M, et al. Contact  ment of EMFi-based air-coupled ultrasonic transducer[J].
                 and non-contact ultrasonic measurement in the food in-  Technical Acoustics, 2018, 37(5): 507–510.
                 dustry: a review[J]. Measurement Science & Technology,  [13] 杜功焕, 朱哲民, 龚秀芬. 声学基础 [M]. 南京: 南京大学出版
                 2016, 27(1): 012001.                              社, 2001: 344–347.
              [2] Dahl T, Ealo J L, Bang H J, et al. Applications of air-  [14] 孔涛, 徐春广, 张运涛, 等. 空气耦合超声换能器声场计算与
                 borne ultrasound in human-computer interaction[J]. Ul-  测量研究 [J]. 机械工程学报, 2011, 47(22): 19–24.
                 trasonics, 2014, 54(7): 1912–1921.                Kong Tao, Xu Chunguang, Zhang Yuntao, et al.  In-
              [3] Waag G, Hoff L, Norli P. Air-coupled ultrasonic through-  vestigation of acoustic field calculation and measurement
                 transmission thickness measurements of steel plates[J]. Ul-  method for air-coupled ultrasonic transducer[J]. Journal
                 trasonics, 2015, 56: 332–339.                     of Mechanical Engineering, 2011, 47(22): 19–24.
   5   6   7   8   9   10   11   12   13   14   15