Page 220 - 应用声学2019年第4期
P. 220
680 2019 年 7 月
法抑制连续波声呐直达波影响的有效性,有关各干 IEEE Journal of Oceanic Engineering, 2002, 127(2):
扰抑制方法的性能评价及实验研究,需在后续的工 310–321.
[12] 高守传, 黄春琳, 粟毅. 基于 RLS 横向滤波器自适应抵消法的
作中深入展开。
直达波抑制 [J]. 信号处理, 2004, 20(6): 566–571.
Gao Shouchuan, Huang Chunlin, Su Yi. Direct wave
suppression based on adaptive interference canceling
参 考 文 献
method[J]. Signal Processing, 2004, 20(6): 566–571.
[13] 黄聪. 强相干干扰抑制技术研究 [D]. 哈尔滨: 哈尔滨工程大
[1] 刘贯领, 凌国民, 严琪. 主动声纳检测技术的回顾与展望 [J].
学, 2012.
声学技术, 2007, 26(2): 335–340.
[14] 范展, 梁国龙, 王逸林. 一种零陷展宽鲁棒自适应波束形成算
Liu Guanling, Ling Guomin, Yan Qi. Review and
法 [J]. 电子与信息学报, 2013, 35(9): 2764–2770.
prospect of active sonar detection techniques[J]. Technical
Fan Zhan, Liang Guolong, Wang Yilin. Robust adaptive
Acoustics, 2007, 26(2): 335–340.
beamforming with null widening[J]. Journal of Electronics
[2] 田坦, 刘国枝, 孙大军. 声呐技术 [M]. 哈尔滨: 哈尔滨工程大
& Information Technology, 2013, 35(9): 2764–2770.
学出版社, 2000.
[15] 李文兴, 毛晓军, 孙亚秀. 一种新的波束形成零陷展宽算法 [J].
[3] Vossen R. Low frequency continuous active sonar[C]. Pro-
电子与信息学报, 2014, 36(10): 2882–2888.
ceeding of the European Conference on Undersea Defense
Li Wenxing, Mao Xiaojun, Sun Yaxiu. A new algorithm
Technology, 2011.
for null broadening beamforming[J]. Journal of Electron-
[4] Hague D A, Buck J R. A generalized sinusoidal fre-
ics & Information Technology, 2014, 36(10): 2882–2888.
quency modulated waveform for active sonar[C]. Con-
[16] 惠俊英, 余赟, 惠娟, 等. 多途信道中声屏蔽及声聚焦 [J]. 哈尔
ference Record of the Forty Sixth Asilomar Conference
滨工程大学学报, 2009, 30(3): 299–306.
on Signals, Systems and Computers (ASILOMAR), 2012:
Hui Junying, Yu Yun, Hui Juan, et al. Acoustic shielding
876–879.
and acoustic focusing[J]. Journal of Harbin Engineering
[5] Hickman G, Krolik J L. Non-recurrent wideband con-
University, 2009, 30(3): 299–306.
tinuous active sonar[C]. Proceeding of OCEANS’12
[17] Lu Z, Li J. Impact of strong direct blast on active sonar
MTS/IEEE, 2012: 1–6.
systems[J]. IEEE Transactions on Aerospace and Elec-
[6] Deferrari H, Wylie J. Ideal signals and processing for con-
tronic Systems, 2015, 51(2): 894–909.
tinuous active sonar[C]. Proceeding of meetings on acous-
[18] Harry L V T. Optimum array processing[M]. New York:
tics, 2013.
USA, Wiley Press, 2002.
[7] Hague D A, Buck J R. The generalized sinusoidal
[19] Murphy S M, Hines P C. Sub-band processing of con-
frequency modulated waveform for continuous active
tinuous active sonar signals in shallow water[C]. Oceans.
sonar[C]. Proceeding of OCEANS’15 MTS/IEEE, 2015.
[8] Stoica P, He H, Li J. New algorithms for designing uni- IEEE, 2015: 1–4.
modular sequences with good correlation properties[J]. [20] Munafo A, Canepa G, Kevin D L. Continuous active
IEEE Transactions on Aerospace and Electronic Systems, sonars for littoral undersea surveillance[J]. IEEE Journal
2009, 57(4): 1415–1425. of Oceanic Engineering, 2002, 127(2): 310–321.
[9] Liang J, Li J. On designing the transmission and reception [21] Mailloux R J. Covariance matrix augmentation to pro-
of multistatic continuous active sonar systems[J]. IEEE duce adaptive array pattern troughs[J]. Electronics Let-
Transactions on Aerospace and Electronic Systems, 2014, ters, 1995, 31(8): 771–772.
50(1): 285–299. [22] 余赟. 浅海多途信道中声聚焦与声屏蔽技术研究 [D]. 哈尔滨:
[10] Grimmett D, Wakayama C. Multistatic tracking for 哈尔滨工程大学, 2009.
continuous active sonar using Doppler-bearing measure- [23] 芦嘉, 生雪莉, 凌青, 等. 双基地声呐发射声屏蔽技术 [J]. 哈
ments[C]. Proceeding of the 16th International Conference 尔滨工程大学学报, 2015, 36(7): 1177–1182.
on Information Fusion, 2014. Lu Jia, Sheng Xueli, Ling Qing, et al. Transmission shield-
[11] Guillaume G, Genevieve J. Principal component inverse ing technology for bistatic sonar[J]. Journal of Harbin En-
algorithm for detection in the presence of reverberation[J]. gineering University, 2015, 36(7): 1177–1182.