Page 259 - 应用声学2019年第4期
P. 259

第 38 卷 第 4 期             盛斯雨等: 快速正交搜索算法在水声信号处理中的应用                                          719


             所需的运算时间也会远多于 FFT 这类经典谱估计                            [8] 胡广书. 数字信号处理 —理论、算法与实现 [M]. 第三版. 北
             算法。此时可以根据实际需求设置合理的搜索停止                                京: 清华大学出版社, 2012: 498–499.
                                                                 [9] Stoica P, Moses R L. Spectral analysis of signals[M]. En-
             条件以减少搜索次数,从而减少计算时间,关于搜索
                                                                   glewood Cliffs, NJ: Pearson Prentice Hall, 2005.
             停止条件的设置也是今后需要进一步研究的问题。                             [10] Proakis J G, Manolakis D G. Digital signal processing-
                                                                   principles, algorithms, and applications[M]. Fourth Edi-
             致谢    首先我要向给予我帮助的老师和同学致以                              tion. Englewood Cliffs, NJ: Prentice Hall, 2007.
             诚挚的感谢,他们为实验数据的采集付出了巨大的                             [11] Kay S M. Modern spectral estimation[M]. Englewood
             努力,其次本文中还用到了SWellEx-96 Event S5实                      Cliffs, NJ: Prentice Hall, 1987.
                                                                [12] Marple S L. Digital spectral analysis with applications[M].
             验的数据,在此也要对参与该实验的全体人员表示
                                                                   Englewood Cliffs, NJ: Prentice Hall, 1987.
             感谢。                                                [13] Oppenheim A V, Schafer R W. Digital signal process-
                                                                   ing[M]. Englewood Cliffs, NJ: Prentice Hall, 1975.
                                                                [14] Cooly J W, Tukey J W. An algorithm for the machine
                            参 考     文   献                          calculation of complex Fourier series[J]. Mathematics of
                                                                   Computation, 1965, 19(90): 297–301.
                                                                [15] Zhang L, Xing M D, Qiu C W, et al. Resolution enhance-
              [1] Korenberg M J. A robust orthogonal algorithm for sys-  ment for inversed synthetic aperture radar imaging un-
                 tem identification and time series analysis[J]. Biological  der low SNR via improved compressive sensing[J]. IEEE
                 Cybernetics, 1989, 60(2): 267–276.                Transactions on Geoscience and Remote Sensing, 2010,
              [2] El-Shafie A, Noureldin A, McGaughey D R, et al. Fast  48(10): 3824–3838.
                 orthogonal search (FOS) versus fast Fourier transform  [16] 陈韶华, 郑伟, 付继伟. 通过相位内插与补偿提高相干平均线
                 (FFT) as spectral model estimations techniques applied  谱检测性能 [J]. 声学学报, 2015, 40(3): 675–681.
                 for structural health monitoring (SHM)[J]. Structural and  Chen Shaohua, Zheng Wei, Fu Jiwei. Improving coher-
                 Multidisciplinary Optimization, 2012, 45(2): 503–513.  ent averaging line spectrum detection with phase interpo-
              [3] Korenberg M J, Paarmann L D. Orthogonal approaches  lation and compensation[J]. Acta Acustica, 2015, 40(3):
                 to time-series analysis and system identification[J]. IEEE  675–681.
                 Signal Processing Magazine, 1991, 8(3): 29–43.  [17] Ayhan B, Trussell H J, Chow M Y, et al. On the use of
              [4] Osman A H, Noureldin A, El-Shafie A, et al. Fast or-  a lower sampling rate for broken rotor bar detection with
                 thogonal search approach for distance protection of trans-  DTFT and AR-based spectrum methods[J]. IEEE Trans-
                 mission lines[J]. Electric Power Systems Research, 2010,  actions on Industrial Electronics, 2008, 55(3): 1421–1434.
                 80(2): 215–221.                                [18] Kim Y H, Youn Y W, Hwang D H, et al. High-resolution
              [5] 王志伟, 秦俊奇, 杨功流, 等. 基于快速正交搜索的车载导航                  parameter estimation method to identify broken rotor bar
                 方法 [J]. 中国惯性技术学报, 2017, 25(3): 592–598.           faults in induction motors[J]. IEEE Transactions on In-
                 Wang Zhiwei, Qin Junqi, Yang Gongliu, et al. The shak-  dustrial Electronics, 2013, 60(7): 4103–4117.
                 ing error compensation for gun-board SINS[J]. Journal of  [19] 王春兴. 基于 Matlab 实现现代功率谱估计 [J]. 现代电子技
                 Chinese Inertial Technology, 2017, 25(3): 592–598.  术, 2011, 34(16): 65–67.
              [6] 张燕, 申森. 基于快速正交搜索算法的非线性预测控制 [J]. 化                Wang Chunxing.  Modern power spectrum estimation
                 工自动化及仪表, 2014, 41(11): 1226–1228, 1244.           based on Matlab[J]. Modern Electronics Technique, 2015,
                 Zhang Yan, Shen Sen. Nonlinear predictive control based  34(16): 65–67.
                 on fast orthogonal search algorithm[J]. Control and In-  [20] Duarte M F, Eldar Y C. Structured compressed sensing:
                 struments in Chemical Industry, 2014, 41(11): 1226–1228,  from theory to applications[J]. IEEE Transactions on Sig-
                 1244.                                             nal Processing, 2011, 59(7): 4053–4085.
              [7] Korenberg M J, Paarmann L D. Applications of fast or-  [21] McGraughey D R, Korenberg M J, Adeney K M, et al. Us-
                 thogonal search: time-series analysis and resolution of sig-  ing the fast orthogonal search with first term reselection
                 nals in noise[J]. Annals of Biomedical Engineering, 1989,  to find subharmonic terms in spectral analysis[J]. Annals
                 17(3): 219–231.                                   of Biomedical Engineering, 2003, 31(4): 741–751.
   254   255   256   257   258   259   260   261   262   263   264