Page 42 - 应用声学2019年第5期
P. 42

794                                                                                  2019 年 9 月


                                                                 [4] Song S J, Kim C H. Simulation of 3-D radiation beam
             3 结论                                                  patterns propagated through a planar interface from ul-
                                                                   trasonic phased array transducers[J]. Ultrasonics, 2002,
                 本文针对一维线型超声相控阵在楔块 -铝 -黄                            40(1–8): 519–524.
                                                                 [5] Schmerr L W. Fundamentals of ultrasonic nondestructive
             铜 -钢四层介质中的辐射声场进行了模拟仿真。利
                                                                   evaluation—A modeling approach[M]. New York: Plenum
             用基于最小时间原理的射线追踪法以及线性插值,                                Press, 1998: 127–131.
             快速求出声波在多层介质中的传播路径以及不同                               [6] Wen J J, Breazeale M A. A diffraction beam field ex-
                                                                   pressed as the superposition of Gaussian beams[J]. Jour-
             情况下各阵元的时间延迟,然后利用高斯声束等效
                                                                   nal of the Acoustical Society of America, 1988, 83(5):
             点源模型,计算了介质中的偏转声场以及不同聚焦                                1752–1756.
             点的聚焦声场,最后分析了焦点位置对聚焦声场的                              [7] Kim H J, Song S J, Schmerr L W. An ultrasonic mea-
                                                                   surement model using a multi-Gaussian beam model
             影响。计算结果表明:(1) 本文所采用的高斯声束等
                                                                   for a rectangular transducer[J]. Ultrasonics, 2006, 44(8):
             效点源模型结合射线追踪法,确实能够用于计算超                                e969–e974.
             声相控阵在多层介质中的辐射声场。(2) 实际利用                            [8] 郭文静, 陈友兴, 金永, 等. 基于多元高斯声束模型的圆柱体
                                                                   超声检测声场仿真 [J]. 应用声学, 2013, 32(5): 354–360.
             偏转声场进行检测时,必须考虑入射角度。当入射
                                                                   Guo Wenjing, Chen Youxing, Jin Yong, et al. Simulation
             角度过大时,透射声束将会变窄,而且当入射角度                                of the ultrasonic inspection of sound field of the cylinder
             大于临界角时,相应的透射声束无法传播进去。(3)                              based on multi-Gaussian beam model[J]. Journal of Ap-
                                                                   plied Acoustics, 2013, 32(5): 354–360.
             即便聚焦点超出了相控阵的聚焦范围,但一般情况
                                                                 [9] 史慧宇, 阎守国, 张碧星. 焊缝结构中超声相控阵聚焦声场的
             下,聚焦点处的位移幅值仍然比无延时声场的位移                                数值模拟及分析 [J]. 应用声学, 2018, 37(5): 817–824.
             幅值大,显示出了相控阵聚焦的优越性。(4) 不同聚                             Shi Huiyu, Yan Shouguo, Zhang Bixing.  Simulations
                                                                   and analyzation of phased array focus sound field in
             焦点处的聚焦效果不同,实际检测时应根据检测区
                                                                   the welds[J]. Journal of Applied Acoustics, 2018, 37(5):
             域结构及位置特点,合理放置相控阵换能器。                                  817–824.
                                                                [10] Huang R, Schmerr L W, Sedov A. Multi-Gaussian ultra-
                                                                   sonic beam modeling for multiple curved interfaces—an
                            参 考     文   献                          ABCD matrix approach[J]. Research in Nondestructive
                                                                   Evaluation, 2005, 16(4): 143–174.
                                                                [11] 赵新玉, 刚铁, 张碧星. 非近轴近似多高斯声束模型的相控阵
              [1] 孙芳, 曾周末, 王晓媛, 等. 界面条件下线型超声相控阵声场                  换能器声场计算 [J]. 声学学报, 2008, 33(5): 475–480.
                 特性研究 [J]. 物理学报, 2011, 60(9): 435–440.             Zhao Xinyu, Gang Tie, Zhang Bixing. Prediction of radia-
                 Sun Fang, Zeng Zhoumo, Wang Xiaoyuan, et al. Acous-  tion beam fields from an array transducer with nonparax-
                 tic field characteristics of ultrasonic linear phased array  ial multi-Gaussian beam model[J]. Acta Acustica, 2008,
                 for an interface condition[J]. Acta Physica Sinica, 2011,  33(5): 475–480.
                 60(9): 435–440.                                [12] Zhao X, Gang T. Nonparaxial multi-Gaussian beam mod-
              [2] Wooh S C, Shi Y. A simulation study of the beam steer-  els and measurement models for phased array transduc-
                 ing characteristics for linear phased arrays[J]. Journal of  ers[J]. Ultrasonics, 2009, 49(1): 126–130.
                 Nondestructive Evaluation, 1999, 18(2): 39–57.  [13] Huang R, Schmerr L W, Sedov A. A new multi-Gaussian
              [3] 陈振华, 许倩, 卢超. 基于超声相控阵衍射波图像的缺陷测量                   beam model for phased array transducers, review of
                 方法 [J]. 应用声学, 2018, 37(4): 447–454.               progress in quantitative nondestructive evaluation[C].
                 Chen Zhenhua, Xu Qian, Lu Chao. A defect measure-  AIP Conference Proceedings, 2007, 894: 751–758.
                 ment method based on ultrasonic phased array diffraction  [14] Schmerr L W. Fundamentals of ultrasonic phased
                 wave image[J]. Journal of Applied Acoustics, 2018, 37(4):  arrays[M].  Springer  International  Publishing,  2015:
                 447–454.                                          138–146.
   37   38   39   40   41   42   43   44   45   46   47