Page 42 - 应用声学2019年第5期
P. 42
794 2019 年 9 月
[4] Song S J, Kim C H. Simulation of 3-D radiation beam
3 结论 patterns propagated through a planar interface from ul-
trasonic phased array transducers[J]. Ultrasonics, 2002,
本文针对一维线型超声相控阵在楔块 -铝 -黄 40(1–8): 519–524.
[5] Schmerr L W. Fundamentals of ultrasonic nondestructive
铜 -钢四层介质中的辐射声场进行了模拟仿真。利
evaluation—A modeling approach[M]. New York: Plenum
用基于最小时间原理的射线追踪法以及线性插值, Press, 1998: 127–131.
快速求出声波在多层介质中的传播路径以及不同 [6] Wen J J, Breazeale M A. A diffraction beam field ex-
pressed as the superposition of Gaussian beams[J]. Jour-
情况下各阵元的时间延迟,然后利用高斯声束等效
nal of the Acoustical Society of America, 1988, 83(5):
点源模型,计算了介质中的偏转声场以及不同聚焦 1752–1756.
点的聚焦声场,最后分析了焦点位置对聚焦声场的 [7] Kim H J, Song S J, Schmerr L W. An ultrasonic mea-
surement model using a multi-Gaussian beam model
影响。计算结果表明:(1) 本文所采用的高斯声束等
for a rectangular transducer[J]. Ultrasonics, 2006, 44(8):
效点源模型结合射线追踪法,确实能够用于计算超 e969–e974.
声相控阵在多层介质中的辐射声场。(2) 实际利用 [8] 郭文静, 陈友兴, 金永, 等. 基于多元高斯声束模型的圆柱体
超声检测声场仿真 [J]. 应用声学, 2013, 32(5): 354–360.
偏转声场进行检测时,必须考虑入射角度。当入射
Guo Wenjing, Chen Youxing, Jin Yong, et al. Simulation
角度过大时,透射声束将会变窄,而且当入射角度 of the ultrasonic inspection of sound field of the cylinder
大于临界角时,相应的透射声束无法传播进去。(3) based on multi-Gaussian beam model[J]. Journal of Ap-
plied Acoustics, 2013, 32(5): 354–360.
即便聚焦点超出了相控阵的聚焦范围,但一般情况
[9] 史慧宇, 阎守国, 张碧星. 焊缝结构中超声相控阵聚焦声场的
下,聚焦点处的位移幅值仍然比无延时声场的位移 数值模拟及分析 [J]. 应用声学, 2018, 37(5): 817–824.
幅值大,显示出了相控阵聚焦的优越性。(4) 不同聚 Shi Huiyu, Yan Shouguo, Zhang Bixing. Simulations
and analyzation of phased array focus sound field in
焦点处的聚焦效果不同,实际检测时应根据检测区
the welds[J]. Journal of Applied Acoustics, 2018, 37(5):
域结构及位置特点,合理放置相控阵换能器。 817–824.
[10] Huang R, Schmerr L W, Sedov A. Multi-Gaussian ultra-
sonic beam modeling for multiple curved interfaces—an
参 考 文 献 ABCD matrix approach[J]. Research in Nondestructive
Evaluation, 2005, 16(4): 143–174.
[11] 赵新玉, 刚铁, 张碧星. 非近轴近似多高斯声束模型的相控阵
[1] 孙芳, 曾周末, 王晓媛, 等. 界面条件下线型超声相控阵声场 换能器声场计算 [J]. 声学学报, 2008, 33(5): 475–480.
特性研究 [J]. 物理学报, 2011, 60(9): 435–440. Zhao Xinyu, Gang Tie, Zhang Bixing. Prediction of radia-
Sun Fang, Zeng Zhoumo, Wang Xiaoyuan, et al. Acous- tion beam fields from an array transducer with nonparax-
tic field characteristics of ultrasonic linear phased array ial multi-Gaussian beam model[J]. Acta Acustica, 2008,
for an interface condition[J]. Acta Physica Sinica, 2011, 33(5): 475–480.
60(9): 435–440. [12] Zhao X, Gang T. Nonparaxial multi-Gaussian beam mod-
[2] Wooh S C, Shi Y. A simulation study of the beam steer- els and measurement models for phased array transduc-
ing characteristics for linear phased arrays[J]. Journal of ers[J]. Ultrasonics, 2009, 49(1): 126–130.
Nondestructive Evaluation, 1999, 18(2): 39–57. [13] Huang R, Schmerr L W, Sedov A. A new multi-Gaussian
[3] 陈振华, 许倩, 卢超. 基于超声相控阵衍射波图像的缺陷测量 beam model for phased array transducers, review of
方法 [J]. 应用声学, 2018, 37(4): 447–454. progress in quantitative nondestructive evaluation[C].
Chen Zhenhua, Xu Qian, Lu Chao. A defect measure- AIP Conference Proceedings, 2007, 894: 751–758.
ment method based on ultrasonic phased array diffraction [14] Schmerr L W. Fundamentals of ultrasonic phased
wave image[J]. Journal of Applied Acoustics, 2018, 37(4): arrays[M]. Springer International Publishing, 2015:
447–454. 138–146.