Page 13 - 《应用声学》2019年第6期
P. 13
第 38 卷 第 6 期 张国昌等: 使用同心多环阵提升声源定位鲁棒性 915
与仿真结果类似, 在 CH 展开阶数相同时, [5] Salvati D, Drioli C, Foresti G L. A low complexity robust
UCCA 的定位鲁棒性在所有实验布放的声源位 beamforming using diagonal unloading for acoustic source
localization[J]. IEEE/ACM Transactions on Audio Speech
置下均具有明显优势。分析CH展开阶数,在大部分
& Language Processing, 2018, 26(3): 609–622.
的声源方位下,UCA 在 CH 展开阶数为 4 阶时定位 [6] 居太亮. 基于麦克风阵列的声源定位算法研究 [D]. 成都: 电
性能较优,但与 3阶CH 展开的 UCCA 相比,仍有不 子科技大学, 2006.
[7] 柯昆. 声源定位技术研究 [D]. 西安: 西安电子科技大学,
小的差距。
2010.
综合上述的仿真和实验结果来看,UCCA 在 [8] Brandstein M, Ward D. Microphone arrays: signal pro-
以下条件下均具有显著优于 UCA 的定位性能: cessing techniques and applications[M]. Springer Science
& Business Media, 2013.
(1) 相同CH展开阶数,上述所有的T 60 和SNR条件 [9] Lee B, Kalker T. A vectorized method for computationally
下;(2) 强混响或者低信噪比时,任意的 CH 展开阶 efficient SRP-PHAT sound source localization[C]. 12th In-
数下。在高噪声和弱混响的部分 CH 展开阶数下, ternational Workshop on Acoustic Echo and Noise Con-
trol, F, 2010.
UCA与UCCA具有接近的DOA 估计性能。 [10] Zhang C, Florencio D, Ba D E, et al. Maximum likeli-
hood sound source localization and beamforming for direc-
5 结论 tional microphone arrays in distributed meetings[J]. IEEE
Transactions on Multimedia, 2008, 10(3): 538–548.
本文阐述了一种针对多环阵列的环谐波展开 [11] Ishi C T, Chatot O, Ishiguro H, et al. Evaluation of
a MUSIC-based real-time sound localization of multi-
技术。环谐波展开系数经补偿滤波器补偿后被用于
ple sound sources in real noisy environments[C]. 2009
声源方位估计。为了提升CH域方位估计的稳健性, IEEE/RSJ International Conference on Intelligent Robots
针对 UCA 贝塞尔函数零点处噪声放大问题,提出 and Systems, F, 2009.
[12] Cobos M, Marti A, Lopez J J. A modified SRP-PHAT
了一种最小模准则设计 UCCA 补偿滤波器的方法。 functional for robust real-time sound source localization
针对混响环境,利用环谐波展开解耦频率与方位角 with scalable spatial sampling[J]. IEEE Signal Processing
相关性的特点,CSSM 被用于UCA 和UCCA。仿真 Letters, 2011, 18(1): 71–74.
[13] Silverman H F, Yu Y, Sachar J M, et al. Performance of
结果表明,合理设置孔径的最小模 UCCA 可以解决 real-time source-location estimators for a large-aperture
UCA 零点问题,同时也避免了正则化引入的低频 microphone array[J]. IEEE Transactions on Speech & Au-
波束展宽。统计性能的仿真和实验显示,在相同麦 dio Processing, 2005, 13(4): 593–606.
[14] Traa J, Wingate D, Stein N, et al. Robust source lo-
克风数目和阵列孔径的前提下,与 UCA 相比,使用 calization and enhancement with a probabilistic steered
UCCA可以显著提升混响环境下的DOA稳健性。 response power model[J]. IEEE Transactions on Speech &
Audio Processing, 2016, 24(3): 493–503.
[15] Zhang C, Florencio D, Zhang Z. Why does PHAT work
well in low noise, reverberative environments?[C]. IEEE
参 考 文 献
International Conference on Acoustics, Speech and Signal
Processing, F, 2008.
[1] Evers C, Naylor P A. Acoustic SLAM[J]. IEEE/ACM [16] Wang H, Kaveh M. Coherent signal-subspace processing
Transactions on Audio Speech and Language Processing, for the detection and estimation of angles of arrival of mul-
2018, 26(9): 1484–1498. tiple wide-band sources[J]. IEEE Transactions on Acous-
[2] Nikunen J, Virtanen T. Direction of arrival based spa- tics Speech and Signal Processing, 1985, 33(4): 823–831.
tial covariance model for blind sound source separation[J]. [17] Doron M A, Weiss A J. On focusing matrices for wide-
IEEE/ACM Transactions on Audio Speech and Language band array processing[J]. IEEE Transactions on Signal
Processing, 2014, 22(3): 727–739. Processing, 1992, 40(6): 1295–1302.
[3] Farmani M, Pedersen M S, Tan Z H, et al. Maximum like- [18] Yoon Y S, Kaplan L M, McClellan J H. TOPS: new DOA
lihood approach to “informed” sound source localization estimator for wideband signals[J]. IEEE Transactions on
for hearing aid applications[C]. 2015 IEEE International Signal Processing, 2006, 54(6): 1977–1989.
Conference on Acoustics, Speech and Signal Processing. [19] Claudio E D D, Parisi R. WAVES: weighted average of
New York, IEEE, 2015: 16–20. signal subspaces for robust wideband direction finding[J].
[4] Minotto V P, Jung C R, Lee B. Simultaneous-speaker IEEE Transactions on Signal Processing, 2001, 49(10):
voice activity detection and localization using mid-fusion 2179–2191.
of SVM and HMMs[J]. IEEE Transactions on Multimedia, [20] Tianaroig E, Jacobsen F, Grande E F. Beamforming with
2014, 16(4): 1032–1044. a circular microphone array for localization of environ-