Page 107 - 《应用声学》2020年第1期
P. 107

第 39 卷 第 1 期      陈建新等: 基于子带信号瞬时频率的特征提取及其在车型分类中的应用                                          103


                   95
                                                                   based on Shamma’s model[J]. Journal of Applied Acous-
                   90                                              tics, 2011, 30(6): 407–417.
                                                                 [3] Nakagawa S, Wang L, Ohtsuka S. Speaker identification
                   85
                                                                   and verification by combining MFCC and phase informa-
                  юᆸဋ/%  80                                        tion[J]. IEEE Transactions on Audio, Speech and Lan-
                                                                   guage Processing, 2012, 20(4): 1085–1095.
                   75
                                                                   phase spectrum in human listening tests[J]. Speech Com-
                   70                                            [4] Paliwal K K, Alsteris L D. On the usefulness of STFT
                                               IF(Mel)             munication, 2005, 45(2): 153–170.
                   65                          MFCC
                                                                 [5]  Duarte M F, Hu Y H. Vehicle classification in distributed
                   60                                              sensor networks[J]. Journal of Parallel and Distributed
                     -5    0      5     10    15     20            Computing, 2004, 64(7): 826–838.
                                  η٪උ/dB
                                                                 [6] 王敏, 赵鹤鸣. 基于多带解调分析和瞬时频率估计的耳语音话
             图 4  不同信噪比下两种特征分类性能比较 (数据集 1)                         者识别 [J]. 声学学报, 2010, 35(4): 471–476.
             Fig. 4 Comparison of two features classification perfor-  Wang Min, Zhao Heming. Whispered speaker identifi-
             mance under different signal to noise ratio(Data Set 1)  cation based on multiband demodulation analysis and in-
                                                                   stantaneous frequency estimation[J]. Acta Acustica, 2010,
                   90                                              35(4): 471–476.
                                                                 [7] Li Q, Huang Y. An auditory-based feature extraction algo-
                   80
                                                                   rithm for robust speaker identification under mismatched
                   70                                              conditions[J]. IEEE Transactions on Audio, Speech and
                                                                   Language Processing, 2011, 19(6): 1791–1801.
                  юᆸဋ/%  60                                      [8] Shamma S, Klein D. The case of the missing pitch tem-
                                                                   plates: how harmonic templates emerge in the early audi-
                   50
                                                                   tory system[J]. Journal of the Acoustical Society of Amer-
                   40
                                              IF(Mel)              ica, 2000, 107(5): 2631–2644.
                                              MFCC
                   30                                            [9] Patel T B, Patil H A. Cochlear filter and instantaneous
                                                                   frequency based features for spoofed speech detection[J].
                   20
                    -5     0      5     10    15     20            IEEE Journal of Selected Topics in Signal Processing,
                                  η٪උ/dB                           2017, 11(4): 618–631.
                                                                [10] 顾明亮, 夏玉果, 杨亦鸣. 支持矢量机的汉语声调识别 [J]. 声
             图 5  不同信噪比下两种特征分类性能比较 (数据集 2)
                                                                   学技术, 2007, 26(6): 1186–1190.
             Fig. 5 Comparison of two features classification perfor-
                                                                   Gu Mingliang, Xia Yuguo, Yang Yiming. Support vec-
             mance under different signal to noise ratio(Data Set 2)  tor machine based Chinese tone recognition[J]. Technical
                                                                   Acoustics, 2007, 26(6): 1186–1190.
             6 结论                                               [11] 刘旭, 夏金东, 弓乐, 等. 射频信号在超声检测缺陷识别中的
                                                                   应用研究 [J]. 机械工程学报, 2002, 38(4): 84–87.
                 在基于声信号的车型分类研究中,本文提出了                              Liu Xu, Xia Jindong, Gong Yue, et al. Study on the ap-
             一种基于耳蜗滤波器组的 IF特征提取算法,并将该                              plication of radio-frequency signal in flaw classification of
                                                                   ultrasonic testing[J]. Journal of Mechanical Engineering,
             特征与对数能量相结合,通过可分性测度和分类实                                2002, 38(4): 84–87.
             验表明所提取特征可以有效地实现车型分类并且                              [12] 张浩然, 韩正之, 李昌刚. 基于支持向量机的非线性模型预测
             抗噪性良好。本文实验也验证了相位信息同样能够                                控制 [J]. 系统工程与电子技术, 2003, 25(3): 330–334.
                                                                   Zhang Haoran, Han Zhengzhi, Li Changgang. Support
             反映声目标的重要信息,在声目标识别上有巨大应                                vector based nonlinear model predictive control[J]. Sys-
             用潜力。                                                  tems Engineering Electronics, 2003, 25(3): 330–334.
                                                                [13] 毕超, 冯玉田, 李园辉, 等. 基于 HHT 的声频传感器车辆分类
                            参 考     文   献                          识别 [J]. 电声技术, 2016, 40(6): 48–52.
                                                                   Bi Chao, Feng Yutian, Li Yuanhui, et al. Audio sensor
              [1] Aljaafreh A, Dong L. An evaluation of feature extraction
                                                                   vehicle classification recognition based on HHT[J]. Audio
                 methods for vehicle classification based on acoustic sig-
                                                                   Engineering, 2016, 40(6): 48–52.
                 nals[C]. Networking, Sensing and Control (ICNSC), 2010
                                                                [14] Wang K, Wang R, Feng Y, et al.  Vehicle recognition
                 International Conference on. IEEE, 2010: 570–575.
                                                                   in acoustic sensor networks via sparse representation[C].
              [2] 陈克安, 伍莹, 杨立学. 基于 Shamma 模型的车辆噪声听觉谱
                                                                   IEEE International Conference on Multimedia and Expo
                 特性与目标分类 [J]. 应用声学, 2011, 30(6): 407–417.
                                                                   Workshops. IEEE, 2014.
                 Chen Ke’an, Wu Ying, Yang Lixue. Auditory spectral
                                                                [15] 宋知用. MATLAB 在语音信号分析与合成中的应用 [M]. 北
                 characteristics and target classification for vehicle noise
                                                                   京: 北京航空航天大学出版社, 2013.
   102   103   104   105   106   107   108   109   110   111   112