Page 58 - 《应用声学》2020年第3期
P. 58
378 2020 年 5 月
损伤区域。两幅图的对比结果证明了推导的变厚度 field[J]. Piezoelectrics and Acoustooptics, 2009, 31(4):
聚焦换能器声场计算方法的正确性。 604–607.
[7] Ballard J R, Liu D, Almekkawy M, et al. Multiple-
frequency phased array pattern synthesis for HIFU
4 结论
surgery[C]//Ultrasonics Symposium (IUS), 2011. Inter-
national Conference of the IEEE. IEEE, 2011: 1656–1659.
本文提出了变厚度聚焦换能器,基于瑞利积分 [8] 霍彦明, 陈亚珠. HIFU 技术换能器探头的比较研究 [J]. 中国
原理推导出了变厚度聚焦换能器声场的计算方法, 医疗器械杂志, 2000, 24(2): 97–101.
设计了两种类型的变厚度聚焦换能器,计算了它们 Huo Yanming, Chen Yazhu. Comparative study of ultra-
sound transducers in HIFU[J]. Chinese Journal of Medical
的声焦域并分析了声焦域轴向长度的变化。结果表
Instrumentation, 2000, 24(2): 97–101.
明,与等厚度聚焦换能器声焦域轴向长度相比,中间 [9] Umemura S, Kawabata K, Sasaki K. In vitro and in
薄两边厚换能器声焦域轴向长度明显缩短,适合消 vivo enhancement of sonodynamically active cavitation
by second-harmonic superimposition[J]. Journal of the
融较薄的病变组织;中间厚两边薄换能器声焦域轴
Acoustical Society of America, 1997, 101(1): 569–577.
向长度明显变长,适合消融较厚的病变组织。变厚 [10] He P Z, Xia R M, Duan S M, et al. The affection on
度聚焦换能器中心到边缘的厚度与声焦域轴向长 the tissue lesions of difference frequency in dual-frequency
度变化息息相关,当中心到边缘的厚度呈增加趋势 high-intensity focused ultrasound (HIFU)[J]. Ultrasonics
Sonochemistry, 2006, 13(4): 339–344.
时,则压缩声焦域轴向长度;当中心到边缘的厚度呈 [11] 张德俊. 高强度聚焦超声换能器 [J]. 中国超声诊断杂志,
减小趋势时,则拉伸声焦域轴向长度。 2000, 1(2): 1–4.
通过与 Li 等前期的离体牛肝损伤实验结果对 Zhang Dejun. High-intensity focused ultrasound trans-
ducer[J]. Chinese Journal of Ultrasound Diagnosis, 2000,
比,结果表明,理论计算与实验结果的变化趋势相
1(2): 1–4.
符,证明了变厚度聚焦换能器声场计算方法的正确 [12] Sun Y, Gao X, Wang H, et al. A wideband ultrasonic
性。本文的研究结果可为变厚度聚焦换能器声场研 energy harvester using 1–3 piezoelectric composites with
non-uniform thickness[J]. Applied Physics Letters, 2018,
究和HIFU的临床治疗提供参考。
112(4): 043903.
[13] 孙瑛琦, 曾德平, 张春杨, 等. 一种分析非均匀厚度 1-3 型压
电复合材料换能器性能的方法 [J]. 振动与冲击, 2019, 38(8):
参 考 文 献 75–79.
Sun Yingqi, Zeng Deping, Zhang Chunyang, et al. A
[1] Kennedy J E, Ter H G R, Cranston D. High intensity fo- method on analyzing the performance of a 1-3 piezoelec-
cused ultrasound: surgery of the future?[J]. British Jour- tric composites with non-uniform thickness[J]. Journal of
nal of Radiology, 2003, 76(909): 590–599. Vibration and Shock, 2019, 38(8): 75–79.
[2] Deng L, O’reilly M A, Jones R M, et al. A multi- [14] Chen D, Zheng K, Liu Y. Simulation research of a self-
frequency sparse hemispherical ultrasound phased array focusing spherical ultrasonic transducer[C]//International
for microbubble-mediated transcranial therapy and simul- Conference on Mechatronic Science, 2011. International
taneous cavitation mapping[J]. Physics in Medicine and Conference of the IEEE. IEEE, 2011: 2361–2364.
Biology, 2016, 61(24): 8476–8501. [15] Chan H L W, Unsworth J. Simple model for piezoelec-
[3] Liu H L, Jan C K, Chu P C, et al. Design and experimen- tric ceramic/polymer 1-3 composites used in ultrasonic
tal evaluation of a 256-channel dual-frequency ultrasound transducer applications[J]. IEEE Transactions on Ultra-
phased-array system for transcranial blood–brain barrier sonics, Ferroelectrics and Frequency Control, 1989, 36(4):
opening and brain drug delivery[J]. IEEE Transactions on 434–441.
Biomedical Engineering, 2014, 61(4): 1350–1360. [16] 杜功焕, 朱哲民, 龚秀芬. 声学基础 [M]. 南京: 南京大学出版
[4] 刘欢, 李发琪. 双频高强度聚焦超声换能器应用研究进展 [J]. 社, 2001: 166–167.
声学技术, 2018, 37(3): 243–247. [17] 冯若超声手册 [M]. 南京: 南京大学出版社, 1999: 10.
Liu Huan, Li Faqi. Progress in application of dual fre- [18] Yang J. An introduction to the theory of piezoelectric-
quency high intensity focused ultrasound transducer[J]. ity[M]. US: Springer, 2005: 289–290.
Technical Acoustics, 2018, 37(3): 243–247. [19] Wang Z B, Bai J, Li F Q, et al. Study of a “biological
[5] 张樯. 环状 HIFU 换能器的声场和温度场的研究 [D]. 南京: focal region” of high-intensity focused ultrasound[J]. Ul-
南京大学, 2001. trasound in Medicine and Biology, 2003, 29(5): 749–754.
[6] Li Q Y, Dong Q, Huang X, et al. Linear acoustic anal- [20] 王智彪, 李发琪, 冯诺. 治疗超生原理与应用 [M]. 南京: 南京
ysis of concave sphere dual-frequency focused ultrasonic 大学出版社, 2008: 198–206.