Page 36 - 《应用声学》2021年第1期
P. 36
32 2021 年 1 月
preprint: 1909.10342v1, Signal Processing, 2019. sonics, Ferroelectrics, and Frequency Control, 2020.
[42] Khan S, Huh J, Ye J C, et al. Adaptive and compres- DOI: 10.1109/TUFFC.2020.2993779.
sive beamforming using deep learning for medical ultra- [46] Hyun D, Brickson L L, Looby K T, et al. Beam-
sound[J]. arXiv preprint: Image and Video Processing, forming and speckle reduction using neural networks[J].
2019: 1–11. IEEE Transactions on Ultrasonics, Ferroelectrics, and Fre-
[43] Wiacek A, Gonzalez E, Bell M A L. CohereNet: quency Control, IEEE, 2019, 66(5): 898–910.
a deep learning architecture for ultrasound spa- [47] Brickson L L, Hyun D, Dahl J. Reverberation noise sup-
tial correlation estimation and coherence-based pression in the aperture domain using 3D fully convolu-
beamforming[J]. IEEE Transactions on Ultrason- tional neural networks[C]. IEEE International Ultrasonics
ics, Ferroelectrics, and Frequency Control, 2020. Symposium, IUS. 2018.
DOI: 10.1109/TUFFC.2020.2982848. [48] Gasse M, Millioz F, Roux E, et al. High-quality
[44] Luchies A C, Byram B C. Deep neural networks for ul- plane wave compounding using convolutional neural net-
trasound beamforming[J]. IEEE Transactions on Medical works[J]. IEEE Transactions on Ultrasonics Ferroelectrics
Imaging, 2018, 37(9): 2010–2021. and Frequency Control, 2017, 64(10): 1637–1639.
[45] Nair A A, Washington K N, Tran T D, et al. [49] Zhang X, Liu J, He Q, et al. High quality reconstruc-
Deep learning to obtain simultaneous image and seg- tion of plane-wave imaging using generative adversarial
mentation outputs from a single input of raw ultra- network[C]. IEEE International Ultrasonics Symposium,
sound channel data[J]. IEEE Transactions on Ultra- IUS. 2018.