Page 35 - 《应用声学》2021年第1期
P. 35

第 40 卷 第 1 期             张经科等: 平面波超声成像中的波束合成方法研究进展                                           31


                 trasonics, Ferroelectrics, and Frequency Control, IEEE,  trol, IEEE, 2013, 60(9): 1853–1867.
                 2018, 65(9): 1600–1617.                        [28] Zhang B, Robert J L, David G. Dual-domain compressed
             [13] Bai C, Ji M, Wan M. Fast adaptive beamforming com-  beamforming for medical ultrasound imaging[C]. 2015
                 bined with multiple apodization in ultrasound plane wave  IEEE International Ultrasonics Symposium, IUS, 2015.
                 imaging[C]. IEEE International Ultrasonics Symposium,  [29] Bernard O, Zhang M, Varray F, et al. Ultrasound Fourier
                 IUS, IEEE, 2016.                                  slice imaging: a novel approach for ultrafast imaging
             [14] Lediju M A, Trahey G E, Byram B C, et al. Short-lag spa-  technique[C]. IEEE International Ultrasonics Symposium,
                 tial coherence of backscattered echoes: imaging character-  IUS, 2014(1): 129–132.
                 istics[J]. IEEE Transactions on Ultrasonics Ferroelectrics  [30] Lu J Y. 2D and 3D high frame rate imaging with lim-
                 and Frequency Control, 2011, 58(7): 1377–1388.    ited diffraction beams[J]. IEEE Transactions on Ultrason-
             [15] Dahl J J, Hyun D, Lediju M A, et al. Lesion detectability  ics, Ferroelectrics, and Frequency Control, 1997, 44(4):
                 in diagnostic ultrasound with short-lag spatial coherence  839–856.
                 imaging[J]. Ultrasonic Imaging, 2011, 133: 119–133.  [31] Besson A, Zhang M, Varray F, et al. A sparse reconstruc-
             [16] Chau G, Lavarello R, Dahl J. Short-lag spatial coherence  tion framework for fourier-based plane-wave imaging[J].
                 weighted minimum variance beamformer for plane-wave
                                                                   IEEE Transactions on Ultrasonics, Ferroelectrics, and Fre-
                 images[C]. IEEE International Ultrasonics Symposium,
                                                                   quency Control, 2016, 63(12): 2092–2106.
                 IUS, IEEE, 2016.
                                                                [32] Schiffner M F, Schmitz G. Fast pulse-echo ultrasound
             [17] Hollman K W, Rigby K W, Donnell M O. Coherence fac-
                                                                   imaging employing compressive sensing[C]. IEEE Interna-
                 tor of a speckle from a multi-row probe[C]. IEEE Interna-
                                                                   tional Ultrasonics Symposium, IUS, IEEE, 2011: 688–691.
                 tional Ultrasonics Symposium, IUS, 1999.
                                                                [33] Berthon B, Morichau-Beauchant P, Porée J, et al. Spa-
             [18] Li P, Li M. Adaptive imaging using the generalized co-
                                                                   tiotemporal matrix image formation for programmable ul-
                 herence factor[J]. IEEE Transactions on Ultrasonics Fer-
                                                                   trasound scanners[J]. Physics in Medicine and Biology,
                 roelectrics and Frequency Control, 2003, 50(2): 128–141.
                                                                   2018, 63(3): 03NT03.
             [19] Wang Y, Zheng C, Zhao X, et al. Adaptive scaling Wiener
                                                                [34] Guillaume D, Jean-Luc R, Zhang B, et al. Time domain
                 postfilter using generalized coherence factor for coherent
                                                                   compressive beam forming of ultrasound signals[J]. The
                 plane-wave compounding[J]. Computers in Biology and
                                                                   Journal of the Acoustical Society of America, 2015, 137(5):
                 Medicine, Elsevier Ltd, 2020, 116: 103564.
                                                                   2773–2784.
             [20] Deylami A M. An improved minimum variance beam-
                                                                [35] Wang C, Peng X, Liang D, et al.  An easily-achieved
                 forming applied to plane-wave imaging in medical ul-
                                                                   time-domain beamformer for ultrafast ultrasound imag-
                 trasound[C]. IEEE International Ultrasonics Symposium,
                                                                   ing based on compressive sensing[C]. International Con-
                 IUS, 2016.
                                                                   ference of the IEEE Engineering in Medicine and Biology
             [21] Camacho J, Parrilla M, Fritsch C. Phase coherence imag-
                                                                   Society, 2015: 7490–7493.
                 ing[J]. IEEE Transactions on Ultrasonics, Ferroelectrics,
                                                                [36] Szasz T, Basarab A, Kouame D. Beamforming through
                 and Frequency Control, IEEE, 2009, 56(5): 958–974.
                                                                   regularized inverse problems in ultrasound medical imag-
             [22] Lokesh B, Thittai A K. Spatial resolution improvement in
                                                                   ing[J]. IEEE Transactions on Ultrasonics Ferroelectrics
                 plane wave imaging using adaptive sign coherence factor
                                                                   and Frequency Control, 2016, 63(12): 2031–2044.
                 weighting[C]. IEEE International Ultrasonics Symposium,
                 IUS, IEEE, 2016.                               [37] Besson A, Perdios D, Martinez F, et al. Ultrafast ultra-
             [23] Matrone G, Savoia A S, Caliano G, et al. The delay mul-  sound imaging as an inverse problem: matrix-free sparse
                                                                   image reconstruction[J]. IEEE Transactions on Ultrason-
                 tiply and sum beamforming algorithm in ultrasound B-
                                                                   ics, Ferroelectrics, and Frequency Control, 2018, 65(3):
                 mode medical imaging[J]. IEEE Transactions on Medical
                 Imaging, 2015, 34(4): 940–949.                    339–355.
             [24] Matrone G, Savoia A S, Caliano G, et al. Ultrasound  [38] Carrillo R E, McEwen J D, Wiaux Y. Sparsity averaging
                 plane-wave imaging with delay multiply and sum beam-  reweighted analysis (SARA): a novel algorithm for radio-
                 forming and coherent compounding[C]. Proceedings of the  interferometric imaging[J]. Monthly Notices of the Royal
                 Annual International Conference of the IEEE Engineer-  Astronomical Society, 2012, 426(2): 1223–1234.
                 ing in Medicine and Biology Society, EMBS, IEEE, 2016,  [39] Ozkan E, Member S, Vishnevsky V. Inverse problem of
                 2016-Octob: 3223–3226.                            ultrasound beamforming with sparsity constraints and
             [25] Lustig M, Donoho D, Pauly J M. Sparse MRI: the ap-  regularization[J]. IEEE Transactions on Ultrasonics, Fer-
                 plication of compressed sensing for rapid MR imaging[J].  roelectrics, and Frequency Control, IEEE, 2018, 65(3):
                 Magnetic Resonance in Medicine, 2007, 58(6): 1182–1195.  356–365.
             [26] Hsieh J. Computed tomography[M]. Second Edition.  [40] Zhou S K, Greenspan H, Shen D. Deep learning for med-
                 USA: SPIE, 2009.                                  ical image analysis[M]. 125 London Wall, London EC2Y
             [27] Garcia D, Le Tarnec L, Muth S, et al. Stolt’s f-k migra-  5AS, United Kingdom: Academic Press, 2017.
                 tion for plane wave ultrasound imaging[J]. IEEE Transac-  [41] Luijten B, Cohen R, de Bruijn F J, et al.  Adaptive
                 tions on Ultrasonics, Ferroelectrics, and Frequency Con-  ultrasound beamforming using deep learning[J]. arXiv
   30   31   32   33   34   35   36   37   38   39   40