Page 35 - 《应用声学》2021年第1期
P. 35
第 40 卷 第 1 期 张经科等: 平面波超声成像中的波束合成方法研究进展 31
trasonics, Ferroelectrics, and Frequency Control, IEEE, trol, IEEE, 2013, 60(9): 1853–1867.
2018, 65(9): 1600–1617. [28] Zhang B, Robert J L, David G. Dual-domain compressed
[13] Bai C, Ji M, Wan M. Fast adaptive beamforming com- beamforming for medical ultrasound imaging[C]. 2015
bined with multiple apodization in ultrasound plane wave IEEE International Ultrasonics Symposium, IUS, 2015.
imaging[C]. IEEE International Ultrasonics Symposium, [29] Bernard O, Zhang M, Varray F, et al. Ultrasound Fourier
IUS, IEEE, 2016. slice imaging: a novel approach for ultrafast imaging
[14] Lediju M A, Trahey G E, Byram B C, et al. Short-lag spa- technique[C]. IEEE International Ultrasonics Symposium,
tial coherence of backscattered echoes: imaging character- IUS, 2014(1): 129–132.
istics[J]. IEEE Transactions on Ultrasonics Ferroelectrics [30] Lu J Y. 2D and 3D high frame rate imaging with lim-
and Frequency Control, 2011, 58(7): 1377–1388. ited diffraction beams[J]. IEEE Transactions on Ultrason-
[15] Dahl J J, Hyun D, Lediju M A, et al. Lesion detectability ics, Ferroelectrics, and Frequency Control, 1997, 44(4):
in diagnostic ultrasound with short-lag spatial coherence 839–856.
imaging[J]. Ultrasonic Imaging, 2011, 133: 119–133. [31] Besson A, Zhang M, Varray F, et al. A sparse reconstruc-
[16] Chau G, Lavarello R, Dahl J. Short-lag spatial coherence tion framework for fourier-based plane-wave imaging[J].
weighted minimum variance beamformer for plane-wave
IEEE Transactions on Ultrasonics, Ferroelectrics, and Fre-
images[C]. IEEE International Ultrasonics Symposium,
quency Control, 2016, 63(12): 2092–2106.
IUS, IEEE, 2016.
[32] Schiffner M F, Schmitz G. Fast pulse-echo ultrasound
[17] Hollman K W, Rigby K W, Donnell M O. Coherence fac-
imaging employing compressive sensing[C]. IEEE Interna-
tor of a speckle from a multi-row probe[C]. IEEE Interna-
tional Ultrasonics Symposium, IUS, IEEE, 2011: 688–691.
tional Ultrasonics Symposium, IUS, 1999.
[33] Berthon B, Morichau-Beauchant P, Porée J, et al. Spa-
[18] Li P, Li M. Adaptive imaging using the generalized co-
tiotemporal matrix image formation for programmable ul-
herence factor[J]. IEEE Transactions on Ultrasonics Fer-
trasound scanners[J]. Physics in Medicine and Biology,
roelectrics and Frequency Control, 2003, 50(2): 128–141.
2018, 63(3): 03NT03.
[19] Wang Y, Zheng C, Zhao X, et al. Adaptive scaling Wiener
[34] Guillaume D, Jean-Luc R, Zhang B, et al. Time domain
postfilter using generalized coherence factor for coherent
compressive beam forming of ultrasound signals[J]. The
plane-wave compounding[J]. Computers in Biology and
Journal of the Acoustical Society of America, 2015, 137(5):
Medicine, Elsevier Ltd, 2020, 116: 103564.
2773–2784.
[20] Deylami A M. An improved minimum variance beam-
[35] Wang C, Peng X, Liang D, et al. An easily-achieved
forming applied to plane-wave imaging in medical ul-
time-domain beamformer for ultrafast ultrasound imag-
trasound[C]. IEEE International Ultrasonics Symposium,
ing based on compressive sensing[C]. International Con-
IUS, 2016.
ference of the IEEE Engineering in Medicine and Biology
[21] Camacho J, Parrilla M, Fritsch C. Phase coherence imag-
Society, 2015: 7490–7493.
ing[J]. IEEE Transactions on Ultrasonics, Ferroelectrics,
[36] Szasz T, Basarab A, Kouame D. Beamforming through
and Frequency Control, IEEE, 2009, 56(5): 958–974.
regularized inverse problems in ultrasound medical imag-
[22] Lokesh B, Thittai A K. Spatial resolution improvement in
ing[J]. IEEE Transactions on Ultrasonics Ferroelectrics
plane wave imaging using adaptive sign coherence factor
and Frequency Control, 2016, 63(12): 2031–2044.
weighting[C]. IEEE International Ultrasonics Symposium,
IUS, IEEE, 2016. [37] Besson A, Perdios D, Martinez F, et al. Ultrafast ultra-
[23] Matrone G, Savoia A S, Caliano G, et al. The delay mul- sound imaging as an inverse problem: matrix-free sparse
image reconstruction[J]. IEEE Transactions on Ultrason-
tiply and sum beamforming algorithm in ultrasound B-
ics, Ferroelectrics, and Frequency Control, 2018, 65(3):
mode medical imaging[J]. IEEE Transactions on Medical
Imaging, 2015, 34(4): 940–949. 339–355.
[24] Matrone G, Savoia A S, Caliano G, et al. Ultrasound [38] Carrillo R E, McEwen J D, Wiaux Y. Sparsity averaging
plane-wave imaging with delay multiply and sum beam- reweighted analysis (SARA): a novel algorithm for radio-
forming and coherent compounding[C]. Proceedings of the interferometric imaging[J]. Monthly Notices of the Royal
Annual International Conference of the IEEE Engineer- Astronomical Society, 2012, 426(2): 1223–1234.
ing in Medicine and Biology Society, EMBS, IEEE, 2016, [39] Ozkan E, Member S, Vishnevsky V. Inverse problem of
2016-Octob: 3223–3226. ultrasound beamforming with sparsity constraints and
[25] Lustig M, Donoho D, Pauly J M. Sparse MRI: the ap- regularization[J]. IEEE Transactions on Ultrasonics, Fer-
plication of compressed sensing for rapid MR imaging[J]. roelectrics, and Frequency Control, IEEE, 2018, 65(3):
Magnetic Resonance in Medicine, 2007, 58(6): 1182–1195. 356–365.
[26] Hsieh J. Computed tomography[M]. Second Edition. [40] Zhou S K, Greenspan H, Shen D. Deep learning for med-
USA: SPIE, 2009. ical image analysis[M]. 125 London Wall, London EC2Y
[27] Garcia D, Le Tarnec L, Muth S, et al. Stolt’s f-k migra- 5AS, United Kingdom: Academic Press, 2017.
tion for plane wave ultrasound imaging[J]. IEEE Transac- [41] Luijten B, Cohen R, de Bruijn F J, et al. Adaptive
tions on Ultrasonics, Ferroelectrics, and Frequency Con- ultrasound beamforming using deep learning[J]. arXiv