Page 71 - 《应用声学》2021年第5期
P. 71

第 40 卷 第 5 期                                                                       Vol. 40, No. 5
             2021 年 9 月                          Journal of Applied Acoustics                 September, 2021

             ⋄ 研究报告 ⋄



                         基于改进支持向量机的水声目标-杂波

                                             不平衡分类研究





                                   关 鑫 李然威            †   胡 鹏 冯金鹿 何荣钦


                                              (中国船舶第七一五研究所        杭州   310023)

                摘要:针对水声目标 -杂波数据集在有限样本下的类不平衡特性导致代价敏感支持向量机难以逼近贝叶斯最
                优决策的问题,该文提出了一种基于能量统计方法的支持向量机 (En-SVM)。该算法通过度量原始数据空间
                与有限样本空间特征函数之间的加权平方距离,量化少数类样本不完全采样过程中的信息损失,来补偿再生
                核希尔伯特空间中机器学习算法所需的少数类分类信息,增加少数类样本对决策的影响力。实验结果表明,
                En-SVM 能够在保持高检测概率的同时获得较低虚警概率,即通过分类可以排除大量的杂波,性能优于标准
                支持向量机和代价敏感支持向量机,能够有效处理水声不平衡数据的分类问题,实现主动声呐信号处理中的
                杂波抑制。
                关键词:目标杂波分类;不平衡分类;支持向量机;能量统计
                中图法分类号: TB566           文献标识码: A          文章编号: 1000-310X(2021)05-0715-08
                DOI: 10.11684/j.issn.1000-310X.2021.05.009




                The imbalanced classification of underwater acoustic target-clutter based on
                                         improved support vector machine


                              GUAN Xin     LI Ranwei   HU Peng    FENG Jinlu    HE Rongqin

                                  (China Shipbuilding 715th Research Institute, Hangzhou 310023, China)

                 Abstract: This paper mainly proposed a novel algorithm En-SVM based on energy statistics method for the im-
                 balance characteristics of acoustic target-clutter data sets resulted in cost sensitive support vector machines(CS-
                 SVM) didn’t approach Bayesian optimal decision in limited samples. This algorithm measured the weighted
                 square distance between the original data space and the feature function of the limited sample space, quantifies
                 the information loss in the incomplete sampling process of a few samples, so as to compensate for the minority
                 class classification information required by the machine learning algorithm in the reproducing kernel Hilbert
                 space, and increased the influence of the minority class samples on the decision-making. The experimental
                 results show that the proposed algorithm can obtain a lower false alarm probability while maintaining a high
                 detection probability, which means that a large amount of clutter can be eliminated by classification, and the
                 performance is better than that of standard SVM and CS-SVM, which can effectively deal with the classifi-
                 cation problem of underwater acoustic unbalanced data and realize clutter suppression of active sonar signal
                 processing.
                 Keywords: Target-clutter classification; Imbalance classification; Support vector machine; Energy statistics


             2020-10-09 收稿;2021-04-07 定稿
             作者简介: 关鑫 (1994– ), 男, 陕西丹凤人, 硕士研究生, 研究方向: 水声信号处理。
             †  通信作者 E-mail: lirw501@sina.com
   66   67   68   69   70   71   72   73   74   75   76