Page 114 - 《应用声学》2021年第6期
P. 114
910 2021 年 11 月
[4] Yu N, Genevet P, Kats M A, et al. Light propagation
5 结论 with phase discontinuities: generalized laws of reflection
and refraction[J]. Science, 2011, 334(6054): 333–337.
以广义斯奈尔定律为理论依据,对五模声学超 [5] Li Y, Jiang X, Li R, et al. Experimental realization of
表面的定向反射调控原理进行了理论推导,获得了 full control of reflected waves with subwavelength acous-
tic metasurfaces[J]. Physical Review Applied, 2014, 2(6):
五模超表面的理想连续物性参数分布,并给出了五
064002.
模超表面尺寸设计准则;然后将超表面离散,获得离 [6] Ma G C, Yang M, Xiao S W, et al. Acoustic metasurface
散单胞的密度和体积模量,以此为目标,以单胞基本 with hybrid resonances[J]. Nature Materials, 2014, 13(9):
构型的几何参数为设计变量,进行五模微结构优化 873–878.
[7] Tian Y, Wei Q, Cheng Y, et al. Broadband manipula-
设计,采用均匀化理论计算微结构的等效物性参数; tion of acoustic wavefronts by pentamode metasurface[J].
最后,为验证五模超表面的声波调控能力,采用多物 Applied Physics Letters, 2015, 107(22): 221906.
理场仿真软件仿真模拟了在 1000 ∼ 6000 Hz 声波 [8] Milton G W, Cherkaev A V. Which elasticity tensors
are realizable?[J]. Journal of Engineering Matererials and
频率范围内,对15 、30 和45 三种角度的定向反射
◦
◦
◦
Technology, 1995, 117(4): 483–493.
调控,分析了入射波频率对超表面定向反射性能的 [9] Liu Y, Li Y F, Liu X Z. Manipulation of acoustic
影响,仿真结果展现了五模超表面宽频有效的声波 wavefront by transmissive metasurface based on penta-
mode metamaterials[J]. Chinese Physics B, 2019, 28(2):
调控能力以及调控的可靠性和准确性。本文的研究
306–312.
工作为五模声学超表面的设计和物理实现提供理 [10] Chen Y, Hu G. Broadband and high-transmission meta-
论指导。 surface for converting underwater cylindrical waves to
需要指出的是,五模材料的宽频特性具有上下 plane waves[J]. Physical Review Applied, 2019(12):
044046.
限。对于低工作频率,五模微结构的等效特性比较 [11] Chu Y Y, Wang Z H, Xu Z. Broadband high-efficiency con-
好;而当频率过高时,微结构不能等效为均质材料, trollable asymmetric propagation by pentamode acoustic
采用均匀化理论计算的微结构等效声学参数误差 metasurface[J]. Physics Letters A, 2020(384): 126230.
[12] Zhang X D, Chen H, Zhao Z G, et al. Experimental
较大,声学特性较差,会影响调控效果。
demonstration of a broadband waterborne acoustic meta-
surface for shifting reflected waves[J]. Journal of Applied
Physics, 2020(127): 174902.
参 考 文 献 [13] 杜功焕. 声学基础 [M]. 南京: 南京大学出版社, 2012.
[14] 张向东, 陈虹, 王磊, 等. 圆柱形分层五模材料声学隐身衣的
[1] Li Y, Liang B, Gu Z, et al. Reflected wavefront manipu- 理论与数值分析 [J]. 物理学报, 2015, 64(13): 134303.
lation based on ultrathin planar acoustic metasurfaces[J]. Zhang Xiangdong, Chen Hong, Wang Lei, et al. Theoret-
Scientific Reports, 2013, 3(7464): 2546. ical and numerical analysis of layered cylindrical penta-
[2] Zhao J, Li B, Chen Z N, et al. Redirection of sound mode acoustic cloak[J]. Acta Physica Sinica. 2015, 64(13):
waves using acoustic metasurface[J]. Applied Physics Let- 134303.
ters, 2013, 103(15): 151604. [15] Norris A N, Nagy A J. Metal water: a metamaterial
[3] 李勇. 声学超构表面 [J]. 物理, 2017, 46(11): 721–730. for acoustic cloaking[C]. First International Conference
Li Yong. Acoustic metasurfaces[J]. Physics, 2017, 46(11): on Phononic Crystals, Metamaterials and Optomechan-
721–730. ics, New Mexico, USA, 2011.