Page 65 - 《应用声学》2022年第3期
P. 65

第 41 卷 第 3 期              张巧花等: 圆形阵列无线传感器的鸟鸣声检测方法                                           387


                                                                   Zhang Xiaoxia, Li Ying. Bird sounds recognition based
                                                                   on energy detection in complex environments[J]. Journal
                            参 考     文   献
                                                                   of Computer Applications, 2013, 33(10): 2945–2949.
                                                                [16] 厉剑, 彭任华, 郑成诗, 等. 球谐域自适应混响抵消与声源定
              [1] Bardeli R, Wolff D, Kurth F, et al. Detecting bird sounds  位算法 [J]. 声学学报, 2019, 44(5): 874–886.
                 in a complex acoustic environment and application to  Li Jian, Peng Renhua, Zheng Chengshi, et al. Dereverber-
                 bioacoustic monitoring[J]. Pattern Recognition Letters,  ation and localization using adaptive reverberation cancel-
                 2010, 31(12): 1524–1534.                          lation in the spherical harmonic domain[J]. Acta Acustica,
              [2] Wimmer J, Towsey M, Roe P, et al. Sampling environ-  2019, 44(5): 874–886.
                 mental acoustic recordings to determine bird species rich-  [17] 雷富民, 邢晓莹. 中国鸟类鸣声 [M]. 北京: 科学出版社, 2017.
                 ness[J]. Ecological Applications, 2013, 23(6): 1419–1428.  [18] Ruse M G, Hasselquist D, Hansson B, et al. Automated
              [3] Suzuki T N, Wheatcroft D, Griesser M. Experimental ev-  analysis of song structure in complex birdsongs[J]. Animal
                 idence for compositional syntax in bird calls[J]. Nature  Behaviour, 2016, 112: 39–51.
                 Communications, 2016, 7(1): 1569–1579.         [19] 刘华平, 李昕, 徐柏龄, 等. 语音信号端点检测方法综述及展
              [4] Elemans C, Rasmussen J H, Herbst C T, et al. Univer-  望 [J]. 计算机应用研究, 2008, 25(8): 2278–2283.
                 sal mechanisms of sound production and control in birds  Liu Huaping, Li Xin, Xu Boling, et al. Summary and
                 and mammals[J]. Nature Communications, 2015, 6(1):  survey of endpoint detection algorithm for speech sig-
                 105–192.                                          nals[J]. Application Research of Computers, 2008, 25(8):
              [5] Brooker S A, Stephens P A, Whittingham M J, et al. Au-  2278–2283.
                 tomated detection and classification of birdsong: an en-  [20] 杨健, 李振鹏, 苏鹏. 语音分割与端点检测研究综述 [J]. 计算
                 semble approach[J]. Ecological Indicators, 2020, 117: 1–9.  机应用, 2020, 40(1): 1–7.
              [6] Brandes T S. Feature vector selection and use with hid-  Yang Jian, Li Zhenpeng, Su Peng.  Review of speech
                 den markov models to identify frequency-modulated bioa-  segmentation and endpoint detection[J]. Journal of Com-
                 coustic signals amidst noise[J]. Audio, Speech, and Lan-  puter Applications, 2020, 40(1): 1–7.
                 guage Processing, IEEE Transactions on, 2008, 16(6):  [21] Lee C H, Han C C, Chuang C C. Automatic classi-
                 1173–1180.                                        fication of bird species from their sounds using two-
              [7] Frommolt K H, Tauchert K H. Applying bioacoustic meth-  dimensional cepstral coefficients[J]. IEEE Transactions on
                 ods for long—Term monitoring of a nocturnal wetland  Audio, Speech and Language Processing, 2008, 16(8):
                 bird[J]. Ecological Informatics, 2014, 21: 4–12.  1541–1550.
              [8] Alger S J, Larget B R, Riters L V. A novel statisti-  [22] 谢将剑, 杨俊, 邢照亮, 等. 多特征融合的鸟类物种识别方
                 cal method for behaviour sequence analysis and its ap-  法 [J]. 应用声学, 2020, 39(2): 199–206.
                 plication to birdsong[J]. Animal Behaviour, 2016, 116:  Xie Jiangjian, Yang Jun, Xing Zhaoliang, et al.  Bird
                 181–193.                                          species recognition method based on multi-feature fu-
              [9] Boulmaiz A, Messadeg D, Doghmane N, et al. Robust  sion[J]. Journal of Applied Acoustics,  2020,  39(2):
                 acoustic bird recognition for habitat monitoring with wire-  199–206.
                 less sensor networks[J]. International Journal of Speech  [23] 陈海兰, 孙海信, 齐洁, 等. 基于多维特征联合的鸟类鸣声
                 Technology, 2016, 19(3): 631–645.                 识别方法研究 [J]. 南京大学学报 (自然科学版), 2015, 51(6):
             [10] Xie J, Li X, Xing Z, et al. Improved distributed minimum  1234–1239.
                 variance distortionless response (MVDR) beamforming  Chen Hailan, Sun Haixin, Qi Jie, et al. Research of birds
                 method based on a local average consensus algorithm for  call recognition method based on multi-feature fusion[J].
                 bird audio enhancement in wireless acoustic sensor net-  Journal of Nanjing University (Natural Science), 2015,
                 works[J]. Applied Sciences-Basel, 2019, 9(15): 3153.  51(6): 1234–1239.
             [11] Kojima R, Sugiyama O, Hoshiba K, et al. HARK-Bird-  [24] 杨春勇, 祁宏达, 彭焱秋, 等. 融合声纹信息的能量谱图在鸟
                 Box: a portable real-time bird song scene analysis sys-  类识别中的研究 [J]. 应用声学, 2020, 39(3): 453–463.
                 tem[C]. 2018 IEEE/RSJ International Conference on In-  Yang Chunyong, Qi Hongda, Peng Yanqiu, et al. Research
                 telligent Robots and Systems (IROS). IEEE, 2018.  on the application of energy spectrum with voiceprint
             [12] Potvin D A, Strickland K, MacDougall-Shackleton E A,  information in bird recognition[J]. Journal of Applied
                 et al. Applying network analysis to birdsong research[J].  Acoustics, 2020, 39(3): 453–463.
                 Animal Behaviour, 2019, 154: 95–109.           [25] Rangachari S, Loizou P C. A noise-estimation algorithm
             [13] 张赛花. 面向鸟声传感网的鸟鸣声自动分类方法研究 [D]. 南                  for highly non-stationary environments[J]. Speech Com-
                 京: 南京理工大学, 2018.                                  munication, 2006, 48(2): 220–231.
             [14] Potamitis I, Ntalampiras S, Jahn O, et al. Automatic bird  [26] 余耀, 赵鹤鸣. 非平稳噪声环境下的噪声功率谱估计方法 [J].
                 sound detection in long real-field recordings: applications  数据采集与处理, 2012, 27(4): 486–489.
                 and tools[J]. Applied Acoustics, 2014, 80: 1–9.   Yu Yao, Zhao Heming. New noise estimation method for
             [15] 张小霞, 李应. 基于能量检测的复杂环境下的鸟鸣识别 [J]. 计                highly non-stationary noise environments[J]. Journal of
                 算机应用, 2013, 33(10): 2945–2949.                    Data Acquisition and Processing, 2012, 27(4): 486–489.
   60   61   62   63   64   65   66   67   68   69   70