Page 88 - 《应用声学》2022年第5期
P. 88
764 2022 年 9 月
高后的效果,目标信息更新时间由一个发射周期缩 ference on Information Fusion (FUSION), Xi’an, China,
短为单个子信号的时长。本文提出的正交多相码连 2017.
[14] Jauffret C, Pérez A C, BlancBenon P, et al. Doppler-
续波和相应的回波检测算法,在保证了目标信息更
only target motion analysis in a high duty cycle sonar
新速率前提下,在提升CAS多普勒分辨性能和均匀 system[C]// Heidelburg, Germany, 2016.
混响背景下的单目标检测能力方面,具有明显效果。 [15] Hines P C, Murphy S M, Hicks K T. Comparison of signal
coherence for continuous active and pulsed active sonar
需要注意的是,本论文只分析了单目标情况。
measurements in littoral waters[J]. The Journal of the
当存在多目标或者非均匀混响时,临近强干扰、强 Acoustical Society of America, 2014, 136(4): 2226.
散射区域 (如非均匀、起伏的海底) 所形成的相干函 [16] Hines P C, Hicks K T, Murphy S M, et al. Measurements
数旁瓣 (主要指自相关函数旁瓣和互相关函数) 会 of signal coherence for high and low duty cycle sonars in
a shallow water channel[C]// 2015 Oceans, Genoa, Italy,
对弱目标的检测产生干扰,影响 CAS 的性能。未来 2015.
将对多目标、非均匀混响环境中 CAS的检测性能进 [17] Murphy S M, Hines P C. Sub-band processing of con-
一步开展研究。 tinuous active sonar signals in shallow water[C]// 2015
Oceans, Genoa, Italy, 2015.
[18] Murphy S M, Scrutton J G E, Hines P C. Experimen-
参 考 文 献
tal implementation of an echo repeater for continuous ac-
[1] Gough P T, de Roos A, Cusdin M J. Continuous transmis- tive sonar[J]. IEEE Journal of Oceanic Engineering, 2016,
sion FM sonar with one octave bandwidth and no blind 42(2): 289–297.
time[J]. IEE Proceedings Part F, 1984, 131(3): 270–274. [19] Grimmett D, Plate R. Temporal and Doppler coherence
[2] Politis Z, Probert P. Perception of an indoor robot limits for the underwater acoustic channel during the
workspace by using CTFM sonar imaging[C]//IEEE In- LCAS’15 high duty cycle sonar experiment[C]// 2016
ternational Conference on Robotics and Automation, Oceans, Monterey, CA, USA, 2016.
16–20, May, 1998, 4: 2801–2806. [20] Ferri G, Munafó A, Alves J, et al. A data-driven con-
[3] Politis Z, Smith P J P. Classification of textured sur- trol strategy in synergy with continuous active sonar for
faces for robot navigation using continuous transmission littoral underwater surveillance[C]// 2016 Oceans, Mon-
frequency-modulated sonar signatures[J]. The Interna- terey, CA, USA, 2016.
tional Journal of Robotics Research, 2001, 20(2): 107–128. [21] 庞博, 吴一飞, 刘本奇. 连续波声呐中的调频信号设计方法及
[4] McKerrow P, Harper N. Plant acoustic density profile 性能分析 [J]. 声学技术, 2017, 36(4): 327–334.
model of CTFM ultrasonic sensing[J]. IEEE Sensors Jour- Pang Bo, Wu Yifei, Liu Benqi. The design and perfor-
nal, 2001, 1(4): 245–255. mance of the frequency modulated signal for continuous
[5] Yoong K K, McKerrow P J. Face recognition with CTFM active sonar[J]. Technical Acoustics, 2017, 36(4): 327–334.
sonar[C]// Proceedings of the 2005 Australasian Confer- [22] 周泽民, 曾新吾, 关承宇, 等. 连续波主动声呐的直达波抑制
ence on Robotics & Automation, Sydney, 2005. 处理方法研究 [J]. 应用声学, 2019, 38(4): 674–680.
[6] 朱埜. 主动声呐检测信息原理 [M]. 北京: 海洋出版社, 1990. Zhou Zemin, Zeng Xinwu, Guan Chengyu, et al. Re-
[7] Hickman G, Krolik J L. Non-recurrent wideband continu- search on strong direct blast suppression for continuous
ous active sonar[C]// 2012 Oceans, Hampton Roads, VA, active sonar[J]. Journal of Applied Acoustics, 2019, 38(4):
USA, 2012. 674–680.
[8] de Ferrari H, Wylie J. Ideal signals and processing for [23] 张烈山, 刘璞, 林杰俊, 等. 基于重采样的主动非线性调频
continuous active sonar[C]//Proceedings of Meetings on 连续波声呐测距技术研究 [J]. 仪器仪表学报, 2020, 41(10):
Acoustics, Montreal, Canada, 2013. 74–82.
[9] Liang J, Xu L, Li J, et al. On designing the transmission Zhang Lieshan, Liu Pu, Lin Jiejun, et al. Research on
and reception of multistatic continuous active sonar sys- active nonlinear frequency modulation continuous wave
tems[J]. Aerospace and Electronic Systems, IEEE Trans- sonar ranging technology based on re-sampling[J]. Chinese
actions on, 2014, 50(1): 285–299. Journal of Scientific Instrument, 2020, 41(10): 74–82.
[10] Hague D A, Buck J R. The generalized sinusoidal [24] 刘大利, 刘云涛, 蔡惠智. 水下连续波有源探测的回波检测算
frequency modulated waveform for continuous active 法 [J]. 声学学报, 2014, 39(2): 163–169.
sonar[C]// 2015 Oceans, Genoa, Italy, 2015. Liu Dali, Liu Yuntao, Cai Huizhi. An echo detection al-
[11] Schecklman S, Zurk L M. Extraction of striations from gorithm for underwater contnuous wave active sonar de-
continuous active sonar (CAS) data[C]// 2015 Oceans, tection[J]. Acta Acustica, 2014, 39(2): 163–169.
Genoa, Italy, 2015. [25] Liu D, Zhao X, Lu Y. Detection performance analysis of
[12] Grimmett D, Wakayama C. Multistatic tracking for sub-band processing continuous active sonar[J]. Applied
continuous active sonar using Doppler-bearing measure- Acoustics, 2021, 174: 107700.
ments[C]. IEEE 16th International Conference on Infor- [26] 刘大利, 刘云涛, 蔡惠智. 基于禁忌搜索的正交多相码波形设
mation Fusion (FUSION), Istanbul, Turkey, 2013. 计 [J]. 应用声学, 2012, 31(3): 209–214.
[13] Yang R, Yaakov B S, Claude J, et al. IMM-UGHF-NJ Liu Dali, Liu Yuntao, Cai Huizhi. Orthogonal polyphase
for continuous wave bistatic sonar tracking with propaga- code waveforms design using tabu search[J]. Journal of
tion delay[C]// Proceedings of the 20th International Con- Applied Acoustics, 2012, 31(3): 209–214.