Page 88 - 《应用声学》2022年第5期
P. 88

764                                                                                  2022 年 9 月


             高后的效果,目标信息更新时间由一个发射周期缩                                ference on Information Fusion (FUSION), Xi’an, China,
             短为单个子信号的时长。本文提出的正交多相码连                                2017.
                                                                [14] Jauffret C, Pérez A C, BlancBenon P, et al. Doppler-
             续波和相应的回波检测算法,在保证了目标信息更
                                                                   only target motion analysis in a high duty cycle sonar
             新速率前提下,在提升CAS多普勒分辨性能和均匀                               system[C]// Heidelburg, Germany, 2016.
             混响背景下的单目标检测能力方面,具有明显效果。                            [15] Hines P C, Murphy S M, Hicks K T. Comparison of signal
                                                                   coherence for continuous active and pulsed active sonar
                 需要注意的是,本论文只分析了单目标情况。
                                                                   measurements in littoral waters[J]. The Journal of the
             当存在多目标或者非均匀混响时,临近强干扰、强                                Acoustical Society of America, 2014, 136(4): 2226.
             散射区域 (如非均匀、起伏的海底) 所形成的相干函                          [16] Hines P C, Hicks K T, Murphy S M, et al. Measurements
             数旁瓣 (主要指自相关函数旁瓣和互相关函数) 会                              of signal coherence for high and low duty cycle sonars in
                                                                   a shallow water channel[C]// 2015 Oceans, Genoa, Italy,
             对弱目标的检测产生干扰,影响 CAS 的性能。未来                             2015.
             将对多目标、非均匀混响环境中 CAS的检测性能进                           [17] Murphy S M, Hines P C. Sub-band processing of con-
             一步开展研究。                                               tinuous active sonar signals in shallow water[C]// 2015
                                                                   Oceans, Genoa, Italy, 2015.
                                                                [18] Murphy S M, Scrutton J G E, Hines P C. Experimen-
                            参 考     文   献
                                                                   tal implementation of an echo repeater for continuous ac-
              [1] Gough P T, de Roos A, Cusdin M J. Continuous transmis-  tive sonar[J]. IEEE Journal of Oceanic Engineering, 2016,
                 sion FM sonar with one octave bandwidth and no blind  42(2): 289–297.
                 time[J]. IEE Proceedings Part F, 1984, 131(3): 270–274.  [19] Grimmett D, Plate R. Temporal and Doppler coherence
              [2] Politis Z, Probert P. Perception of an indoor robot  limits for the underwater acoustic channel during the
                 workspace by using CTFM sonar imaging[C]//IEEE In-  LCAS’15 high duty cycle sonar experiment[C]// 2016
                 ternational Conference on Robotics and Automation,  Oceans, Monterey, CA, USA, 2016.
                 16–20, May, 1998, 4: 2801–2806.                [20] Ferri G, Munafó A, Alves J, et al. A data-driven con-
              [3] Politis Z, Smith P J P. Classification of textured sur-  trol strategy in synergy with continuous active sonar for
                 faces for robot navigation using continuous transmission  littoral underwater surveillance[C]// 2016 Oceans, Mon-
                 frequency-modulated sonar signatures[J]. The Interna-  terey, CA, USA, 2016.
                 tional Journal of Robotics Research, 2001, 20(2): 107–128.  [21] 庞博, 吴一飞, 刘本奇. 连续波声呐中的调频信号设计方法及
              [4] McKerrow P, Harper N. Plant acoustic density profile  性能分析 [J]. 声学技术, 2017, 36(4): 327–334.
                 model of CTFM ultrasonic sensing[J]. IEEE Sensors Jour-  Pang Bo, Wu Yifei, Liu Benqi. The design and perfor-
                 nal, 2001, 1(4): 245–255.                         mance of the frequency modulated signal for continuous
              [5] Yoong K K, McKerrow P J. Face recognition with CTFM  active sonar[J]. Technical Acoustics, 2017, 36(4): 327–334.
                 sonar[C]// Proceedings of the 2005 Australasian Confer-  [22] 周泽民, 曾新吾, 关承宇, 等. 连续波主动声呐的直达波抑制
                 ence on Robotics & Automation, Sydney, 2005.      处理方法研究 [J]. 应用声学, 2019, 38(4): 674–680.
              [6] 朱埜. 主动声呐检测信息原理 [M]. 北京: 海洋出版社, 1990.             Zhou Zemin, Zeng Xinwu, Guan Chengyu, et al.  Re-
              [7] Hickman G, Krolik J L. Non-recurrent wideband continu-  search on strong direct blast suppression for continuous
                 ous active sonar[C]// 2012 Oceans, Hampton Roads, VA,  active sonar[J]. Journal of Applied Acoustics, 2019, 38(4):
                 USA, 2012.                                        674–680.
              [8] de Ferrari H, Wylie J. Ideal signals and processing for  [23] 张烈山, 刘璞, 林杰俊, 等. 基于重采样的主动非线性调频
                 continuous active sonar[C]//Proceedings of Meetings on  连续波声呐测距技术研究 [J]. 仪器仪表学报, 2020, 41(10):
                 Acoustics, Montreal, Canada, 2013.                74–82.
              [9] Liang J, Xu L, Li J, et al. On designing the transmission  Zhang Lieshan, Liu Pu, Lin Jiejun, et al. Research on
                 and reception of multistatic continuous active sonar sys-  active nonlinear frequency modulation continuous wave
                 tems[J]. Aerospace and Electronic Systems, IEEE Trans-  sonar ranging technology based on re-sampling[J]. Chinese
                 actions on, 2014, 50(1): 285–299.                 Journal of Scientific Instrument, 2020, 41(10): 74–82.
             [10] Hague D A, Buck J R. The generalized sinusoidal  [24] 刘大利, 刘云涛, 蔡惠智. 水下连续波有源探测的回波检测算
                 frequency modulated waveform for continuous active  法 [J]. 声学学报, 2014, 39(2): 163–169.
                 sonar[C]// 2015 Oceans, Genoa, Italy, 2015.       Liu Dali, Liu Yuntao, Cai Huizhi. An echo detection al-
             [11] Schecklman S, Zurk L M. Extraction of striations from  gorithm for underwater contnuous wave active sonar de-
                 continuous active sonar (CAS) data[C]// 2015 Oceans,  tection[J]. Acta Acustica, 2014, 39(2): 163–169.
                 Genoa, Italy, 2015.                            [25] Liu D, Zhao X, Lu Y. Detection performance analysis of
             [12] Grimmett D, Wakayama C. Multistatic tracking for  sub-band processing continuous active sonar[J]. Applied
                 continuous active sonar using Doppler-bearing measure-  Acoustics, 2021, 174: 107700.
                 ments[C]. IEEE 16th International Conference on Infor-  [26] 刘大利, 刘云涛, 蔡惠智. 基于禁忌搜索的正交多相码波形设
                 mation Fusion (FUSION), Istanbul, Turkey, 2013.   计 [J]. 应用声学, 2012, 31(3): 209–214.
             [13] Yang R, Yaakov B S, Claude J, et al. IMM-UGHF-NJ  Liu Dali, Liu Yuntao, Cai Huizhi. Orthogonal polyphase
                 for continuous wave bistatic sonar tracking with propaga-  code waveforms design using tabu search[J]. Journal of
                 tion delay[C]// Proceedings of the 20th International Con-  Applied Acoustics, 2012, 31(3): 209–214.
   83   84   85   86   87   88   89   90   91   92   93