Page 126 - 《应用声学》2022年第6期
P. 126

972                                                                                 2022 年 11 月


                 由此可知,DRSN 在对实际采样数据识别时仍                            Li Feng, Wang Wenhe, You Yun, et al. Leakage detection
             具有出较高的准确率,对于含噪微泄漏信号的识别,                               approach of gas pipeline coupling leakage noise and pres-
                                                                   sure drop[J]. Journal of Applied Acoustics, 2020, 39(3):
             DRSN 均能实现较好的识别效果,因此 DRSN 可用
                                                                   402–408.
             于对含噪泄漏信号的识别。                                        [7] 李俊杰, 王宏伟, 王俊生. 飞机气体系统泄漏超声信号的处理
                                                                   方法 [J]. 无损检测, 2010, 32(11): 861–864.
             3 结论                                                  Li Junjie, Wang Hongwei, Wang Junsheng. Research on
                                                                   ultrasonic leakage detection of military aircraft gas sys-
                 本文对含噪微弱泄漏的识别方法进行了研究,                              tem[J]. Nondestructive Testing, 2010, 32(11): 861–864.
             提出以一维时域信息作为输入样本,利用 DRSN 对                           [8] Wang T, Yu P, Xiao H H, et al. Detection of small gas
                                                                   leaks based on neural networks and D-S evidential theory
             样本进行识别的方法,通过实验验证,所得结论
                                                                   using ultrasonics[J]. Insight-Non-Destructive Testing and
             如下:                                                   Condition Monitoring, 2014, 56(3): 189–194.
                 (1) 根据泄漏上游压力不同,建立多泄漏强度                          [9] 宁方立, 韩鹏程, 段爽, 等. 基于改进 CNN 的阀门泄漏超声信
             数据集,验证了 DRSN 在对不同强度泄漏信号时均                             号识别方法 [J]. 北京邮电大学学报, 2020, 43(3): 38–44.
                                                                   Ning Fangli, Han Pengcheng, Duan Shuang, et al. Identi-
             具有较强的识别性能,在对较高杂糅混合的泄漏数
                                                                   fication method of valve leakage ultrasonic signal based on
             据进行识别时具有较强的区分能力。                                      improved CNN[J]. Journal of Beijing University of Posts
                 (2) 利用高斯噪声模拟环境噪声,通过改变噪                            and Telecommunications, 2020, 43(3): 38–44.
             声含量,验证了噪声的含量并不会 DRSN 迭代次数                          [10] Ning F L, Cheng Z H, Meng D, et al. Enhanced spec-
                                                                   trum convolutional neural architecture: an intelligent leak
             产生较明显的影响,且在对含噪泄漏信号进行识别
                                                                   detection method for gas pipeline[J]. Process Safety and
             时仍能保持较强的鲁棒性。                                          Environmental Protection, 2021, 146: 726–735.
                 综上所述,利用 DRSN 对噪声环境下带压气体                        [11] 孙烨辰, 李鹏, 常思婕, 等. EEMD 结合改进 PCNN 模型的
             管道微泄漏进行识别是一种可行的方法,同时为尽                                气体泄漏信号降噪 [J]. 计算机仿真, 2020, 37(9): 409–414,
                                                                   455.
             可能提高含噪微泄漏识别的准确率,仍需大量实际                                Sun Yechen, Li Peng, Chang Sijie, et al. EEMD com-
             环境噪声样本,因此后续工作要对不同环境噪声、不                               bined with improved PCNN model for noise reduction of
             同泄漏类型进行分析,探讨其对泄漏识别影响。                                 gas leakage signal[J]. Computer Simulation, 2020, 37(9):
                                                                   409–414, 455.
                                                                [12] 卢锦玲, 郭鲁豫. 基于改进深度残差收缩网络的电力系统暂态
                            参 考     文   献                          稳定评估 [J]. 电工技术学报, 2021, 36(11): 2233–2244.
                                                                   Lu Jinling, Guo Luyu. Power system transient stabil-
                                                                   ity assessment based on improved deep residual shrinkage
              [1] Meribout M, Khezzar L, Azzi A, et al. Leak detection
                                                                   network[J]. Transactions of China Electrotechnical Soci-
                 systems in oil and gas fields: present trends and fu-
                                                                   ety, 2021, 36(11): 2233–2244.
                 ture prospects[J]. Flow Measurement and Instrumenta-
                                                                [13] 车畅畅, 王华伟, 倪晓梅, 等. 基于深度残差收缩网络的滚
                 tion, 2020, 75(14): 1–26.
              [2] Lu H, Iseley T, Behbahani S, et al. Leakage detection  动轴承故障诊断 [J]. 北京航空航天大学学报, 2021, 47(7):
                 techniques for oil and gas pipelines: state-of-the-art[J].  1399–1406.
                 Tunnelling and Underground Space Technology, 2020,  Che Changchang, Wang Huawei, Ni Xiaomei, et al. Fault
                 98(2020): 1–15.                                   diagnosis of rolling bearing based on deep residual shrink-
              [3] Sheen S H, Chine H T, Raptis C A. Ultrasonic techniques  age network[J]. Journal of Beijing University of Aeronau-
                 for detecting helium leaks[J]. Sensors and Actuators B:  tics and Astronautics, 2021, 47(7): 1399–1406.
                 Chemical, 2000, 71(3): 197–202.                [14] Zhao M, Zhong S, Fu X, et al. Deep residual shrinkage
              [4] Yuan F, Zeng Y, Luo R, et al. Numerical and experimen-  networks for fault diagnosis[J]. IEEE Transactions on In-
                 tal study on the generation and propagation of negative  dustrial Informatics, 2020, 16(7): 4681–4690.
                 wave in high-pressure gas pipeline leakage[J]. Journal of  [15] He K, Zhang X, Ren S, et al.  Deep residual learn-
                 Loss Prevention in the Process Industries, 2020, 65(2020):  ing for image recognition[C]// 2016 IEEE Conference on
                 1–14.                                             Computer Vision and Pattern Recognition (CVPR), USA.
              [5] Evalina N, Azis H A. Implementation and design gas leak-  IEEE, 2016.
                 age detection system using ATMega8 microcontroller[J].  [16] 廖平平, 蔡茂林, 张利剑. 气体泄漏流量非介入式超声测量方
                 IOP Conference Series: Materials Science and Engineer-  法 [J]. 机床与液压, 2016, 44(7): 21–25.
                 ing, 2020, 821(2020): 1–6.                        Liao Pingping, Cai Maolin, Zhang Lijian. Invasive ultra-
              [6] 李凤, 王文和, 游赟, 等. 天然气管道泄漏的声压耦合识别方                  sonic method for leakage flow rate measurement[J]. Ma-
                 法 [J]. 应用声学, 2020, 39(3): 402–408.                chine Tool & Hydraulics, 2016, 44(7): 21–25.
   121   122   123   124   125   126   127   128   129   130   131