Page 127 - 《应用声学》2022年第6期
P. 127
第 41 卷 第 6 期 Vol. 41, No. 6
2022 年 11 月 Journal of Applied Acoustics November, 2022
⋄ 研究报告 ⋄
声学微结构的微流控声场的改进与优化 ∗
尉浪浪 1 韩建宁 1† 杨 鹏 2 赵欣洒 1
(1 中北大学信息与通信工程学院 太原 030051)
(2 西喆电子有限公司 东莞 523015)
摘要:受限于加工工艺,目前多数的声表面波微流控芯片主要依靠普通的直通道调节细胞流速,从而控制微球
在通道中的排列,但其形成的声场通常无法满足低能量、多功能的微流控需要。该文在普通声表面波微流控芯
片的基础上构建声学微结构,并改变微结构阵列中铜柱个数与间距,模拟仿真了微流控芯片输出端的电势。结
果表明在 0 ∼ 30 MHz 范围内,铜柱个数与输出端电势呈非严格正相关;但由于铜柱间互相影响,输出端电势
会随着铜柱阵列间距减小,声场变弱。根据上述结论进而可以探索开发性价比更高的声波微流控芯片,针对细
胞操控等存在的问题进行分析优化,提出新的微流细胞操控技术。
关键词:声学微结构;微流控芯片;声表面波;有限元仿真
中图法分类号: O429 文献标识码: A 文章编号: 1000-310X(2022)06-0973-09
DOI: 10.11684/j.issn.1000-310X.2022.06.015
Improvement and optimization of microfluidic sound field based on
acoustic microstructure
YU Langlang 1 HAN Jianning 1 YANG Peng 2 ZHAO Xinsa 1
(1 School of Information and Communication Engineering, North University of China, Taiyuan 030051, China)
(2 Xizhe Electronics Co., Ltd., Dongguan 523015, China)
Abstract: Limited by the processing technology, most of the current surface acoustic wave (SAW) microfluidic
chips rely on the normal straight-through channel to regulate the cell flow rate and thus control the arrangement
of microspheres in the channel. However, the sound field formed by it usually cannot meet the needs of low-
energy and multi-functional microfluidics. In this paper, the acoustic microstructure is constructed on the
basis of a common SAW microfluidic chip, and the potential at the output of the microfluidic chip is simulated
by changing the number and interval of copper columns in the microstructure array. The results show that
the number of copper columns is not strictly positively correlated with the output potential in the range of
0–30 MHz; However, due to the mutual influence between the copper columns, the output potential becomes
weaker as the spacing of the copper column array decreases. Based on the above conclusions it is then possible
to explore the development of more cost-effective acoustic microfluidic chips, to analyze and optimize the
existing problems such as cell manipulation, and to propose new microfluidic cell manipulation techniques.
Keywords: Acoustic microstructure; Microfluidic chips; Surface acoustic wave; Finite element simulation
2021-09-10 收稿; 2021-11-30 定稿
国家自然科学基金项目 (61671414)
∗
作者简介: 尉浪浪 (1998– ), 男, 山西临汾人, 硕士研究生, 研究方向: 声表面波与超材料设计。
† 通信作者 E-mail: hanjn46@nuc.edu.cn