Page 82 - 《应用声学》2022年第6期
P. 82

928                                                                                 2022 年 11 月


             系统的平均降噪量多 5 dB 左右,在 1100∼1900 Hz,                   [8] Baek K H, Elliott S J. Natural algorithms for choosing
             次级声源优化布放系统的平均降噪量比次级声源                                 source locations in active control systems[J]. Journal of
                                                                   Sound and Vibration, 1995, 186(2): 245–267.
             均匀布放系统的平均降噪量多 11∼13 dB 左右。此
                                                                 [9] Li D, Hodgson M. Optimal active noise control in large
             外,两种优化算法中,采用 CVXL1 方法的降噪效果                            rooms using a “locally global” control strategy[J]. The
             更佳。本文所提的根据实测传递函数进行次级声源                                Journal of the Acoustical Society of America, 2005, 118(6):
                                                                   3653–3661.
             优化布放的方法可以为实际工程应用中的次级声
                                                                [10] Duke C R, Sommerfeldt S D, Gee K L, et al. Optimiza-
             源优化布放提供参考。可以利用本文提出的测试步                                tion of control source locations in free-field active noise
             骤对实际工程应用场景的备选次级通路传递函数                                 control using a genetic algorithm[J]. Noise Control Engi-
                                                                   neering Journal, 2009, 57(3): 221–231.
             进行测量,再利用次级声源优化布放算法选出更为
                                                                [11] Chen G S, Bruno R J, Salama M. Optimal place-
             重要的次级声源位置,从而提高实际降噪效果。在                                ment of active/passive members in truss structures us-
             未来的工作中,将会研究次级声源优化布放算法在                                ing simulated annealing[J]. AIAA Journal, 1991, 29(8):
                                                                   1327–1334.
             更多实际场景中的应用。
                                                                [12] Yu G, Cheng L. Location optimization of a long T-shaped
                                                                   acoustic resonator array in noise control of enclosures[J].
                                                                   Journal of Sound and Vibration, 2009, 328(1–2): 42–56.
                            参 考     文   献                       [13] Lilis G N, Angelosante D, Giannakis G B. Sound field
                                                                   reproduction using the Lasso[J]. IEEE Transactions on
              [1] Jorden C. Active control of scattered acoustic fields: can-  Audio, Speech and Language Processing, 2010, 18(8):
                 cellation, reproduction and cloaking[J]. The Journal of the  1902–1912.
                 Acoustical Society of America, 2016, 140(3): 1502–1512.  [14] Khalilian H, Bajic I V, Vaughan R G. Loudspeaker place-
              [2] Nelson P A, Elliott S J. Active control of sound[J]. Physics  ment for sound field reproduction by constrained matching
                 Today, 1993, 46(1): 75–76.                        pursuit[C]. In Proceedings of the 2013 IEEE workshop on
              [3] Kajikawa Y, Gan W S, Kuo S M. Recent advances on  Applications of Signal Processing to Audio and Acoustics,
                 active noise control: open issues and innovative applica-  New Paltz, NY, USA, 20–23 October 2013: 1–4.
                 tions[J]. APSIPA Transactions on Signal and Information  [15] Khalilian H, Bajic I V, Vaughan R G. Towards optimal
                 Processing, 2012, 1, e3: 1–21.                    source placement for sound field reproduction[C]. In Pro-
              [4] 陈克安. 有源噪声控制 [M]. 北京: 国防工业出版社, 2003:              ceedings of the 2013 IEEE workshop on International Con-
                 71–74, 177–182.                                   ference on Acoustics, Speech and Signal Processing, Van-
              [5] Guo J, Pan J, Bao C. Actively created quiet zones by mul-  couver, BC, Canada, 26–31 May 2013: 321–325.
                 tiple control source in free space[J]. The Journal of the  [16] Khalilian H, Bajic I V, Vaughan R G. Comparison of
                 Acoustical Society of America, 1997, 101(3): 1492–1501.  loudspeaker placement methods for sound field reproduc-
              [6] 陈克安, 胥健, 王岩. 基于声场复现的有源噪声控制支撑技                    tion[J]. IEEE/ACM Transactions on Audio, Speech, and
                 术 [J]. 应用声学, 2018, 37(5): 743–750.                Language Processing, 2016, 24(8): 1364–1379.
                 Chen Ke’an, Xu Jian, Wang Yan. Supporting techniques  [17] Liu J, Wang X, Wu M, et al. An active control strategy
                 for active noise control based on sound field recurrence[J].  for the scattered sound field control of a rigid sphere[J].
                 Journal of Applied Acoustics, 2018, 37(5): 743–750.  The Journal of the Acoustical Society of America, 2018,
              [7] 陈克安, 胥健, 王磊, 等. 基于声场分解和稀疏正则化的二维                  144(1): EL52–EL58.
                 空间次级声源布局优化 [J]. 西北工业大学学报, 2019, 37(4):         [18] 韩荣, 吴鸣, 王晓琳, 等. 鲁棒性有源头枕系统的设计方法 [J].
                 697–703.                                          应用声学, 2018, 37(5): 664–670.
                 Chen Ke’an, Xu Jian, Wang Lei, et al. Optimization of  Han Rong, Wu Ming, Wang Xiaolin, et al.  A design
                 secondary sources configuration in two-dimensional space  method of robust active headrests[J]. Journal of Applied
                 based on sound field decomposition and sparsity-inducing  Acoustics, 2018, 37(5): 664–670.
                 regularization[J]. Journal of Northwestern Polytechnical  [19] Elliott S. Signal processing for active control[M]. US: Aca-
                 University, 2019, 37(4): 697–703.                 demic Press, 2000: 57–60.
   77   78   79   80   81   82   83   84   85   86   87