Page 195 - 《应用声学》2023年第1期
P. 195

第 42 卷 第 1 期              宋志江等: 基于定量分析的气固两相流声速模型综述                                          191


             两相流中复杂的相间相互作用机理,从而仍存在一                             [13] Harker A H, Temple J A G. Velocity and attenuation of
             定的误差,因而需要进一步的研究发展。而在气固                                ultrasound in suspensions of particles in fluids[J]. Journal
                                                                   of Physics D-Applied Physics, 2000, 21(11): 1576–1588.
             混合物声速的理论研究及声波法测量应用中,应根
                                                                [14] Deshwal B R, Sharma A, Singh K C. Speeds of
             据具体对象情况选择合适的两相声速模型,以确保                                sound and excess isentropic compressibilities of butyl
             结果的可靠。                                                acetate+aromatic hydrocarbons[J]. Chinese Journal of
                                                                   Chemical Engineering, 2008, 16(4): 599–604.
                                                                [15] Ament W S. Sound propagation in gross mixtures[J]. The
                                                                   Journal of the Acoustical Society of America, 1953, 25(4):
                            参 考     文   献                          638–641.
                                                                [16] Rudinger G. Fundamentals of gas-particle flow[M]. New
                                                                   York: Elsevier Scientific, 1980: 40–47.
              [1] 宋梓枫. 水平气固两相流动的模拟研究 [D]. 北京: 中国科学
                                                                [17] 陈大伟, 王裴, 蔚喜军, 等. 稠密可压缩气粒两相流动中的
                 院大学 (中国科学院过程工程研究所), 2021.
                                                                   等熵声速计算建模及物理规律 [J]. 物理学报, 2016, 65(9):
              [2] 范良士, 朱超. 气固两相流原理 (上)[M]. 北京: 科学出版社,
                                                                   195–202.
                 2018: 251–262.
              [3] 蔡小舒, 潘咏志, 吴伟亮, 等. 电厂煤粉粒径, 浓度和速度的在                Chen Dawei, Wang Pei, Yu Xijun, et al. On modeling
                                                                   and physical laws of isentropic speed of sound in dense
                 线测量技术研究 [J]. 动力工程, 1999, 19(6): 466–470.
                                                                   gas-particle two-phase compressible flow[J]. Acta Physica
                 Cai Xiaoshu, Pan Yongzhi, Wu Weiliang, et al. A study
                 of on-line measurement technology for size, concentra-  Sinica, 2016, 65(9): 195–202.
                 tion and velocity of pulverized coal[J]. Power Engineering,  [18] 方丁酉. 两相流动力学 [M]. 长沙: 国防科技大学出版社,
                 1999, 19(6): 466–470.                             1988: 11.
              [4] 李少芝, 王传生. 发电锅炉煤粉浓度在线监测系统开发与应                  [19] Evans J M. Models for sound propagation in suspensions
                 用 [J]. 工业锅炉, 2020(3): 37–39.                      and emulsions[D]. London: Open University, 1996: 36–38.
                 Li Shaozhi, Wang Chuansheng. Development and applica-  [20] Sewell C J T. The extinction of sound in a viscous at-
                 tion of on-line monitoring system for pulverized coal con-  mosphere by small obstacles of cylindrical and spherical
                 centration in power generation boiler[J]. Industrial Boiler,  form[J]. Philosophical Transactions of the Royal Society
                 2020(3): 37–39.                                   of London, 1910, 210(566): 239–270.
              [5] 李通, 李如飞, 周燕弟, 等. 基于电荷感应法的风粉在线检测               [21] Lamb H. Hydrodynamics[M]. New York: Dover publica-
                 仪器开发与应用 [J]. 自动化应用, 2018(12): 37–39.              tions, 1945: 659.
              [6] 张国强. 基于声发射技术的颗粒粒径在线监测研究 [D]. 北京:              [22] Epstein P S, Carhart R R. The absorption of sound in
                 华北电力大学, 2021: 73–82.                              suspensions and emulsions. I. Water fog in air[J]. The
              [7] Wu Z H, Fan F X, Yan J P, et al. An adaptable direct  Journal of the Acoustical Society of America, 1953, 25(3):
                 simulation Monte Carlo method for simulating acoustic  553–565.
                 agglomeration of solid particles[J]. Chemical Engineering  [23] Allegra J R, Hawley S A, Holton G. Attenuation of sound
                 Science, 2022, 249: 117298.                       in suspensions and emulsions: theory and experiments[J].
              [8] 屈广宁, 凡凤仙, 张斯宏, 等. 驻波声场中单分散细颗粒的相                  The Journal of the Acoustical Society of America, 1972,
                 互作用特性 [J]. 物理学报, 2020, 69(6): 178–186.            51(5): 1545–1564.
                 Qu Guangning, Fan Fengxian, Zhang Sihong, et al. Inter-  [24] McClements D J. Ultrasonic characterization of emulsions
                 action between monodisperse fine particles in a standing  and suspensions[J]. Advances in Colloid and Interface Sci-
                 wave acoustic field[J]. Acta Physica Sinica, 2020, 69(6):  ence, 1991, 37(1–2): 33–72.
                 178–186.                                       [25] 钱祖文. 散砂及表层海洋 (砂质) 沉积物中的声速 [J]. 声学学
              [9] Yu H, Tan C, Dong F. Particle size characterization in liq-  报, 2008, 33(5): 385–388.
                 uid–solid dispersion with aggregates by broadband ultra-  Qian Zuwen. Sound speed in air-filled sands and marine
                 sound attenuation[J]. IEEE Transactions on Instrumenta-  shallow-layer sediments(sands)[J]. Acta Acustica, 2008,
                 tion and Measurement, 2021, 70: 7501611.          33(5): 385–388.
             [10] Tan C, Murai Y, Liu W L, et al. Ultrasonic doppler tech-  [26] 钱祖文. 颗粒介质中的黏滞系数 [J]. 物理学报, 2012, 61(13):
                 nique for application to multiphase flows: a review[J].  220–223.
                 International Journal of Multiphase Flow, 2021, 144:  Qian Zuwen. Viscosity coefficient in granular medium[J].
                 103811.                                           Acta Physica Sinica, 2012, 61(13): 220–223.
             [11] Temkin S. Sound propagation in bubbly liquids. A re-  [27] Soo S L. Effect of transport processes on attenuation and
                 view[R]. Memorandum Report, Jun.–Aug. 1988 Naval Re-  dispersion in aerosols[J]. The Journal of the Acoustical
                 search Lab., Washington, DC. Acoustic Systems Branch.  Society of America, 1960, 32(8): 943–946.
                 1989: 1–46.                                    [28] Temkin S, Dobbins A. Attenuation and dispersion of
             [12] Urick R J. A sound velocity method for determining the  sound by particulate-relaxation processes[J]. The Jour-
                 compressibility of finely divided substances[J]. Journal of  nal of the Acoustical Society of America, 1966, 40(2):
                 Applied Physics, 1947, 18(11): 983–987.           317–324.
   190   191   192   193   194   195   196   197   198