Page 123 - 《应用声学》2023年第2期
P. 123
第 42 卷 第 2 期 殷昊等: 扬声器激励次声频校正器的设计和性能分析 311
一致。该装置的研制成功,可用于次声传感器外场 messungswesen, 2009.
试验及次声台站建设,确保次声传感器的工作状态 [9] Sadikoglu E, Bilgiç E, Karaböce B. A laser pistonphone
based on self-mixing interferometry for the absolute cal-
稳定。下一步,拟利用该装置次声标准源预留的光
ibration of measurement microphones[J]. Applied Acous-
学测量窗口测量扬声器纸盆振动位移,开展密封腔 tics, 2004, 65(9): 833–840.
的体积、腔内压力变化的绝对测量方法研究,以拓 [10] 杨军, 李程, 张炳毅, 等. 微压传感器绝对法动态校准理论与
宽的该装置可校准的次声波频率范围。 实验研究 [C]. 计量与测试学术交流会, 2007: 126–134.
[11] He L B, He W, Qin J, et al. A reference infrasound source
with low distortion based on laser pistonphone technol-
参 考 文 献 ogy[J]. Journal of Metrology Society of India, 2012, 27(4):
213–218.
[12] 何龙标, 何闻, 杨平, 等. 0.1∼20 Hz 低失真度激光活塞发声
[1] 何龙标, 牛锋, 杨平. 次声传感器校准技术研究现状 [C]. 2014
器的设计与实现 [J]. 声学学报, 2016, 41(3): 435–441.
年全国环境声学学术会议论文集, 2014: 34–37.
He Longbiao, He Wen, Yang Ping, et al. Design of a pre-
[2] Wente E C. The thermophone[J]. Physical Review, 1922,
cise laser pistonphone with low distortion operating from
19(4): 333.
0.1 Hz to 20 Hz[J]. Acta Acustica, 2016, 41(3): 435–441.
[3] 荣左超. 次声活塞发声器机理及相关技术研究 [D]. 杭州: 浙
[13] 张炳毅, 黄日恒, 杨军, 等. 次声监测系统设计和次声传感器
江大学, 2013.
[4] 秦俊辉, 祝海江, 何龙标. 基于虚拟仪器的活塞发声腔校准系 相位校准技术研究 [J]. 计测技术, 2016, 36(5): 9–13.
Zhang Bingyi, Huang Riheng, Yang Jun, et al. Design of
统的设计与实现 [J]. 化工学报, 2012, 63(9): 2926–2930.
Qin Junhui, Zhu Haijiang, He Longbiao. Design and im- infrasound monitor system and phase calibration of infra-
plementation of pistonphone calibration system based on sonic transducers[J]. Metrology & Measurement Technol-
ogy, 2016, 36(5): 9–13.
virtual instrument[J]. Journal of Chemical Industry and
Engineering, 2012, 63(9): 2926–2930. [14] 滕鹏晓, 吕君, 姬培锋, 等. 一种次声传感器的便携式校准装
[5] Rennie A J. A laser-pistonphone for absolute calibration 置: 中国, CN211291733U[P]. 2020-08-18.
of laboratory standard microphones in frequency range [15] 刘迪, 刘爱冰, 陈峰, 等. 传声器次声段灵敏度校准的误差机
0.1 Hz to 100 Hz[R]. Teddington: National Physical Lab- 理研究 [J]. 应用声学, 2021, 40(6): 926–936.
oratory, 1977. Liu Di, Liu Aibing, Chen Feng, et al. Study on the cal-
[6] Barham R G. The NPL laser pistonphone[J]. Journal of ibration error mechanism of the infrasound sensitivity of
Low Frequency Noise and Vibration and Active Control, microphones[J]. Journal of Applied Acoustics, 2021, 40(6):
1993, 12(2): 36–38. 926–936.
[7] Barham R, Goldsmith M. The application of the NPL [16] 何龙标, 何闻, 杨平, 等. 基于气体状态方程的次声声压源的
laser pistonphone to the international comparison of 研究与实现 [J]. 电子测量与仪器学报, 2013, 27(7): 589–595.
measurement microphones[J]. Metrologia, 2007, 44(3): He Longbiao, He Wen, Yang Ping, et al. Research and
210–216. realization of infrasound pressure source based on the gas
[8] Sinojmeri M. Final technical report for key comparison state equation[J]. Journal of Electronic Measurement and
CCAUV.A-K2[R]. Vienna: Bundesamt Für Eich-und Ver- Instrument, 2013, 27(7): 589–595.