Page 127 - 《应用声学》2023年第3期
P. 127

第 42 卷 第 3 期            刘尧等: 道岔尖轨轨底缺陷的磁致伸缩导波监测实验研究                                          565


                 (3) 补偿后的导波监测信号波包能量值与轨底                          [9] Burger F A, Loveday P W, Long C S. Large scale im-
             缺陷深度的关系近似服从抛物线方程,表明开发的                                plementation of guided wave based broken rail monitor-
                                                                   ing[C]// AIP Conference Proceedings. American Institute
             道岔尖轨磁致伸缩导波监测系统有望实现轨底缺
                                                                   of PhysicsAIP, 2015.
             陷的定量评估。                                            [10] Loveday P W, Taylor R M C, Long C S, et al. Monitoring
                                                                   the reflection from an artificial defect in rail track using
                                                                   guided wave ultrasound[C]//AIP Conference Proceedings.
                            参 考     文   献                          AIP Publishing LLC, 2018, 1949(1): 090003.
                                                                [11] 胡剑虹, 唐志峰, 蒋金洲, 等. 道岔钢轨轨底缺陷的导波检测
              [1] 任盛伟, 李清勇, 许贵阳, 等. 鲁棒实时钢轨表面擦伤检测算
                                                                   技术研究 [J]. 中国铁道科学, 2014, 35(3): 34–40.
                 法研究 [J]. 中国铁道科学, 2011, 32(1): 25–29.
                                                                   Hu Jianhong, Tang Zhifeng, Jiang Jinzhou, et al. Re-
                 Ren Shengwei, Li Qingyong, Xu Guiyang, et al. Research
                                                                   search on guided wave inspection technology for rail base
                 on robust fast algorithm of rail surface defect detection[J].
                                                                   defect of turnout[J]. China Railway Science, 2014, 35(3):
                 China Railway Science, 2011, 32(1): 25–29.
                                                                   34–40.
              [2] Kim H W, Lee J K, Kim Y Y. Circumferential phased ar-
                                                                [12] 付连著, 伍建军, 郎向伟, 等. 基于超声导波的道岔尖轨伤损
                 ray of shear-horizontal wave magnetostrictive patch trans-
                                                                   监测试验研究 [J]. 铁道建筑, 2018, 58(5): 124–128.
                 ducers for pipe inspection[J]. Ultrasonics, 2013, 53(2):
                                                                   Fu Lianzhu, Wu Jianjun, Lang Xiangwei, et al. Exper-
                 423–431.
                                                                   imental research on switch rail damage monitoring us-
              [3] Vinogradov S, Sergey A. Magnetostrictive transducer for
                                                                   ing ultrasonic guided waves[J]. Railway Engineering, 2018,
                 torsional guided waves in pipes and plates[J]. Materials
                                                                   58(5): 124–128.
                 Evaluation, 2009, 67(3): 333–341.
                                                                [13] Salmanpour M, Khodaei Z S, Aliabadi M. Guided wave
              [4] Hayashi T, Song W J, Rose J L. Guided wave dispersion
                                                                   temperature correction methods in structural health mon-
                 curves for a bar with an arbitrary cross-section, a rod and
                                                                   itoring[J]. Journal of Intelligent Material Systems and
                 rail example[J]. Ultrasonics, 2003, 41(3): 175–183.
                                                                   Structures, 2017, 28(5): 604–618.
              [5] Rose J L, Avioli M J, Mudge P, et al. Guided wave inspec-
                                                                [14] Moll J, Fritzen C P. Guided waves for autonomous online
                 tion potential of defects in rail[J]. NDT & E International,
                                                                   identification of structural defects under ambient temper-
                 2004, 37(2): 153–161.
              [6] 卢超, 李诚, 常俊杰. 钢轨轨底垂直振动模式导波检测技术的                   ature variations[J]. Journal of Sound and Vibration, 2012,
                                                                   331(20): 4587–4597.
                 实验研究 [J]. 实验力学, 2012, 27(5): 593–600.
                 Lu Chao, Li Cheng, Chang Junjie. Experimental investi-  [15] Roy S, Lonkar k, Janapati V, et al. A novel physics-based
                 gation on guided wave detection technology for rail bot-  temperature compensation model for structural health
                 tom vertical vibration mode[J]. Journal of Experimental  monitoring using ultrasonic guided waves[J]. Structural
                 Mechanics, 2012, 27(5): 593–600                   Health Monitoring, 2014, 13(3): 321–342.
              [7] 卢超, 刘芮辰, 常俊杰. 钢轨垂直振动模态的导波频散曲线、波               [16] Periyannan S, Rajagopal P, Balasubramaniam K. Re-
                 结构及应用 [J]. 振动工程学报, 2014, 27(4): 598–604.          configurable multi-level temperature sensing by ultra-
                 Lu Chao, Liu Ruichen, Chang Junjie. Guided waves dis-  sonic “spring-like” helical waveguide[J]. Journal of Ap-
                 persion curves and wave structures of the rail’s vertically  plied Physics, 2016, 119(14): 144502.
                 vibrating modes and their application[J]. Journal of Vi-  [17] Vinogradov S, Eason T, Lozev M. Evaluation of mag-
                 bration Engineering, 2014, 27(4): 598–604.        netostrictive transducers for guided wave monitoring of
                                                                                     ◦
              [8] 范振中. 铁路道岔尖轨及长心轨导波检测技术研究 [D]. 北京:                 pressurized pipe at 200 C[J]. Journal of Pressure Vessel
                 中国铁道科学研究院, 2016.                                  Technology, 2018, 140(2): 21603.
   122   123   124   125   126   127   128   129   130   131   132