Page 35 - 《应用声学》2023年第3期
P. 35

第 42 卷 第 3 期                 王珍珠等: 卷积神经网络主动目标方位估计                                           473


                                                                 [5] Niu H, Reeves E, Gerstoft P. Source localization in an
             3 结论                                                  ocean waveguide using supervised machine learning[J].
                                                                   The Journal of the Acoustical Society of America, 2017,
                 本文提出了一种基于 CNN 模型的主动目标方                            142(3): 1176–1188.
                                                                 [6] Niu H, Ozanich E, Gerstoft P. Ship localization in Santa
             位估计方法,将接收阵列信号 CBF 后的结果输入
                                                                   Barbara Channel using machine learning classifiers[J]. The
             网络,经过仿真实验证实该方法在不同 SNR 下具                              Journal of the Acoustical Society of America, 2017, 142(5):
             有较高的鲁棒性,可以有效估计目标波达方向。在                                EL455–EL460.
             实际海洋环境下进行仿真,该方法与MVDR、CBF、                           [7] Wang Y, Peng H. Underwater acoustic source localization
                                                                   using generalized regression neural network[J]. The Jour-
             MSNR 波束形成方法的比对结果证实,其具有更高
                                                                   nal of the Acoustical Society of America, 2018, 143(4):
             的估计精度。但本文提出的方法只是相比传统方法                                2321–2331.
             有较好的性能,通过模拟仿真对模型进行了验证,但                             [8] Huang Z, Xu J, Gong Z, et al. Source localization using
             实测的水声数据难以获取,模型依赖于训练数据,当                               deep neural networks in a shallow water environment[J].
                                                                   The Journal of the Acoustical Society of America, 2018,
             训练环境与测试环境差别较大时,仍然存在环境模                                143(5): 2922–2932.
             型失配的问题。                                             [9] Elbir A M. Deep MUSIC: Multiple signal classification via
                                                                   deep learning[J]. IEEE Sensors Letters, 2020, 4(4): 1–4.
                                                                [10] Yao Y, Lei H, He W. A-CRNN-based method for coherent
                            参 考     文   献                          DOA estimation with unknown source number[J]. Sensors
                                                                   (Basel, Switzerland), 2020, 20(8): 2296.
                                                                [11] Zhu W, Zhang M, Li P, et al. Two-dimensional DOA esti-
              [1] 黄海宁, 李宇. 水声目标探测技术研究现状与展望 [J]. 中国科                mation via deep ensemble learning[J]. IEEE Access, 2020,
                 学院院刊, 2019, 34(3): 264–271.                       8: 124544–124552.
                 Huang Haining, Li Yu. Underwater acoustic detection:  [12] Liu Y, Chen H, Wang B, DOA estimation based on CNN
                 current status and future trends[J]. Bulletin of Chinese  for underwater acoustic array[J]. Applied Acoustics, 2021,
                 Academy of Sciences, 2019, 34(3): 264–271.        172: 107594.
              [2] Bucker H P. Use of calculated sound fields and matched-  [13] 曹怀刚. 单矢量水听器波达方向估计的深度学习模型构建与
                 field detection to locate sound sources in shallow water[J].  应用 [D]. 北京: 中国科学院大学, 2021.
                 The Journal of the Acoustical Society of America, 1976,  [14] 姚琦海, 汪勇, 黎佳艺, 等. 基于广义回归神经网络的强干
                 59(2): 368–373.                                   扰下垂直阵目标距离估计方法 [J]. 应用声学, 2021, 40(5):
              [3] Baggeroer A B. Matched field processing: source localiza-  723–730.
                 tion in correlated noise as an optimum parameter estima-  Yao Qihai, Wang Yong, Li Jiayi, et al. Source range esti-
                 tion problem[J]. The Journal of the Acoustical Society of  mation method of vertical array under strong interference
                 America, 1988, 83(2): 571–587.                    based on GRNN[J]. Journal of Applied Acoustics, 2021,
              [4] Steinberg B Z, Beran M J, Chin S H, et al. A neural net-  40(5): 723–730.
                 work approach to source localization[J]. The Journal of the  [15] Kingma D, Ba J. Adam: a method for stochastic opti-
                 Acoustical Society of America, 1991, 90(4): 2081–2090.  mization[J]. Computer Science, 2014, arXiv: 1412.6980.
   30   31   32   33   34   35   36   37   38   39   40