Page 141 - 《应用声学》2023年第4期
P. 141
第 42 卷 第 4 期 谢志敏等: 采用被动声监测方法识别波弗特海区域海洋水声环境 803
an Arctic pressure ridge[J]. The Journal of the Acoustical duct waveguide[J]. Acta Acustica, 2019, 44(4): 417–428.
Society of America, 1986, 80(1): 256–264. [32] Kyhn L A, Sveegaard S, Tougaard J. Underwater noise
[19] Langleay A J. Acoustic emission from the Arctic ice emissions from a drillship in the Arctic[J]. Marine Pollu-
sheet[J]. The Journal of the Acoustical Society of America, tion Bulletin, 2014, 86(1–2): 424–433.
1989, 85(2): 692–701. [33] Merchant N D, Blondel P, Dakin D T, et al. Averag-
[20] Zakarauskas P, Parfitta C J, Thorleifson J M. Auto- ing underwater noise levels for environmental assessment
matic extraction of spring-time Arctic ambient noise tran- of shipping[J]. The Journal of the Acoustical Society of
sients[J]. The Journal of the Acoustical Society of Amer- America, 2012, 132(4): EL343–EL349.
ica, 1991, 90(1): 470–474. [34] Glowacki O, Deane G B, Moskalik M. The intensity, di-
[21] Buck B M, Greene C R. Arctic deep-water propagation rectionality, and statistics of underwater noise from melt-
measurements[J]. The Journal of the Acoustical Society ing icebergs[J]. Geophysical Research Letters, 2018, 45(9):
of America, 1964, 36(8): 1526–1533. 4105–4113.
[22] Webb S C, Schultz A. Very low frequency ambient noise at
[35] Koutrouvelis I A. An iterative procedure for the estima-
the seafloor under the Beaufort Sea icecap[J]. The Jour-
tion of the parameters of stable laws[J]. Communications
nal of the Acoustical Society of America, 1992, 91(3):
in Statistics-Simulation and Computation, 1981, 10(1):
1429–1439.
17–28.
[23] Roth E H, Hildebrand J A, Wiggins S M, et al. Under-
[36] Ma X Y, Nikias C L. Parameter estimation and blind
water ambient noise on the Chukchi Sea continental slope
channel identification in impulsive signal environments[J].
from 2006–2009[J]. The Journal of the Acoustical Society
IEEE Transactions on Signal Processing, 1995, 43(2):
of America, 2012, 131(1): 104–110.
2884–2897.
[24] Stroeve J, Holland M M, Meier W, et al. Arctic sea ice
[37] Tsihrintzis G A, Nikias C L. Fast estimation of
decline: faster than forecast[J]. Geophysical Research Let-
the parameters of alpha-stable impulsive interference[J].
ters, 2007, 34(9): L09501.
IEEE Transactions on Signal Processing, 1996, 44(6):
[25] Stroeve J C, Serreze M C, Holland M M, et al. The Arc-
1492–1503.
tic’s rapidly shrinking sea ice cover: a research synthe-
[38] Curtis K R, Howe B M, Mercer J A. Low-frequency ambi-
sis[J]. Climatic Change, 2012, 110(3): 1005–1027.
ent sound in the North Pacific: long time series observa-
[26] Johannessen O M, Sagen H, Sandven S, et al. Hotspots in
tions[J]. The Journal of the Acoustical Society of America,
ambient noise caused by ice-edge eddies in the greenland
1999, 106(6): 3189–3200.
and barents seas[J]. IEEE Journal of Oceanic Engineering,
[39] Menze S, Zitterbart D P, van Opzeeland I, et al. The
2003, 28(2): 212–228.
influence of sea ice, wind speed and marine mammals on
[27] Sagers J, Ballard M S, Knobles D P. Investigating the
Southern Ocean ambient sound[J]. Royal Society Open
effects of ocean layering and sea ice cover on acoustic
Science, 2017, 4(1): 160370.
propagation in the Beaufort Sea[J]. The Journal of the
[40] Stein P J, Lewis J K, Parinella J C, et al. Under-ice noise
Acoustical Society of America, 2015, 138(3): 1742–1743.
[28] Kinda G B, Simard Y, Gervaise C, et al. Under-ice ambi- resulting from thermally induced fracturing of the arctic
ent noise in Eastern Beaufort Sea, Canadian Arctic, and ice pack: theory and a test case application[J]. Journal of
its relation to environmental forcing[J]. The Journal of the Geophysical Research: Oceans, 2000, 105(C4): 8813–8826.
Acoustical Society of America, 2013, 134(1): 77–87. [41] Geyer F, Sagen H, Hope G, et al. Identification and quan-
[29] Kinda G B, Simard Y, Gervaise C, et al. Arctic underwa- tification of soundscape components in the Marginal Ice
ter noise transients from sea ice deformation: character- Zone[J]. The Journal of the Acoustical Society of America,
istics, annual time series, and forcing in Beaufort Sea[J]. 2016, 139(4): 1873–1885.
The Journal of the Acoustical Society of America, 2015, [42] 王灵芝, 凌佳乐, 蔡萍, 等. 便携式 80∼120 MHz 频谱分析
138(4): 2034–2045. 仪设计 [J]. 闽南师范学院学报 (自然科学版), 2021, 34(2):
[30] 李启虎, 王宁, 赵进平, 等. 北极水声学: 一门引人关注的新型 79–85.
学科 [J]. 应用声学, 2014, 33(6): 471–483. Wang Lingzhi, Ling Jiale, Cai Ping, et al. Design of
Li Qihu, Wang Ning, Zhao Jinping, et al. Arctic un- portable 80∼120 MHz spectrum analyzer[J]. Journal of
derwater acoustics: an attractive new topic in ocean Zhangzhou Teachers College(Natural Science Edition),
acoustics[J]. Journal of Applied Acoustics, 2014, 33(6): 2021, 34(2): 79–85.
471–483. [43] 姜佩贺, 郭刚, 吴中杰, 等. 基于 IIS2DH 的振动信号处理与传
[31] 卫翀华, 黄海宁, 尹力, 等. 双声道波导中低频环境噪声分布 感器设计 [J]. 仪表技术与传感器, 2021(8): 116–121.
特性 [J]. 声学学报, 2019, 44(4): 417–428. Jiang Peihe, Guo Gang, Wu Zhongjie, et al. Vibration
Wei Chonghua, Huang Haining, Yin Li, et al. Analysis of signal processing and sensor design based on IIS2DH[J].
low frequency environmental noise distribution in dual- Instrument Technique and Sensor, 2021(8): 116–121.