Page 141 - 《应用声学》2023年第4期
P. 141

第 42 卷 第 4 期         谢志敏等: 采用被动声监测方法识别波弗特海区域海洋水声环境                                          803


                 an Arctic pressure ridge[J]. The Journal of the Acoustical  duct waveguide[J]. Acta Acustica, 2019, 44(4): 417–428.
                 Society of America, 1986, 80(1): 256–264.      [32] Kyhn L A, Sveegaard S, Tougaard J. Underwater noise
             [19] Langleay A J. Acoustic emission from the Arctic ice  emissions from a drillship in the Arctic[J]. Marine Pollu-
                 sheet[J]. The Journal of the Acoustical Society of America,  tion Bulletin, 2014, 86(1–2): 424–433.
                 1989, 85(2): 692–701.                          [33] Merchant N D, Blondel P, Dakin D T, et al. Averag-
             [20] Zakarauskas P, Parfitta C J, Thorleifson J M. Auto-  ing underwater noise levels for environmental assessment
                 matic extraction of spring-time Arctic ambient noise tran-  of shipping[J]. The Journal of the Acoustical Society of
                 sients[J]. The Journal of the Acoustical Society of Amer-  America, 2012, 132(4): EL343–EL349.
                 ica, 1991, 90(1): 470–474.                     [34] Glowacki O, Deane G B, Moskalik M. The intensity, di-
             [21] Buck B M, Greene C R. Arctic deep-water propagation  rectionality, and statistics of underwater noise from melt-
                 measurements[J]. The Journal of the Acoustical Society  ing icebergs[J]. Geophysical Research Letters, 2018, 45(9):
                 of America, 1964, 36(8): 1526–1533.               4105–4113.
             [22] Webb S C, Schultz A. Very low frequency ambient noise at
                                                                [35] Koutrouvelis I A. An iterative procedure for the estima-
                 the seafloor under the Beaufort Sea icecap[J]. The Jour-
                                                                   tion of the parameters of stable laws[J]. Communications
                 nal of the Acoustical Society of America, 1992, 91(3):
                                                                   in Statistics-Simulation and Computation, 1981, 10(1):
                 1429–1439.
                                                                   17–28.
             [23] Roth E H, Hildebrand J A, Wiggins S M, et al. Under-
                                                                [36] Ma X Y, Nikias C L. Parameter estimation and blind
                 water ambient noise on the Chukchi Sea continental slope
                                                                   channel identification in impulsive signal environments[J].
                 from 2006–2009[J]. The Journal of the Acoustical Society
                                                                   IEEE Transactions on Signal Processing, 1995, 43(2):
                 of America, 2012, 131(1): 104–110.
                                                                   2884–2897.
             [24] Stroeve J, Holland M M, Meier W, et al. Arctic sea ice
                                                                [37] Tsihrintzis G A, Nikias C L. Fast estimation of
                 decline: faster than forecast[J]. Geophysical Research Let-
                                                                   the parameters of alpha-stable impulsive interference[J].
                 ters, 2007, 34(9): L09501.
                                                                   IEEE Transactions on Signal Processing, 1996, 44(6):
             [25] Stroeve J C, Serreze M C, Holland M M, et al. The Arc-
                                                                   1492–1503.
                 tic’s rapidly shrinking sea ice cover: a research synthe-
                                                                [38] Curtis K R, Howe B M, Mercer J A. Low-frequency ambi-
                 sis[J]. Climatic Change, 2012, 110(3): 1005–1027.
                                                                   ent sound in the North Pacific: long time series observa-
             [26] Johannessen O M, Sagen H, Sandven S, et al. Hotspots in
                                                                   tions[J]. The Journal of the Acoustical Society of America,
                 ambient noise caused by ice-edge eddies in the greenland
                                                                   1999, 106(6): 3189–3200.
                 and barents seas[J]. IEEE Journal of Oceanic Engineering,
                                                                [39] Menze S, Zitterbart D P, van Opzeeland I, et al. The
                 2003, 28(2): 212–228.
                                                                   influence of sea ice, wind speed and marine mammals on
             [27] Sagers J, Ballard M S, Knobles D P. Investigating the
                                                                   Southern Ocean ambient sound[J]. Royal Society Open
                 effects of ocean layering and sea ice cover on acoustic
                                                                   Science, 2017, 4(1): 160370.
                 propagation in the Beaufort Sea[J]. The Journal of the
                                                                [40] Stein P J, Lewis J K, Parinella J C, et al. Under-ice noise
                 Acoustical Society of America, 2015, 138(3): 1742–1743.
             [28] Kinda G B, Simard Y, Gervaise C, et al. Under-ice ambi-  resulting from thermally induced fracturing of the arctic
                 ent noise in Eastern Beaufort Sea, Canadian Arctic, and  ice pack: theory and a test case application[J]. Journal of
                 its relation to environmental forcing[J]. The Journal of the  Geophysical Research: Oceans, 2000, 105(C4): 8813–8826.
                 Acoustical Society of America, 2013, 134(1): 77–87.  [41] Geyer F, Sagen H, Hope G, et al. Identification and quan-
             [29] Kinda G B, Simard Y, Gervaise C, et al. Arctic underwa-  tification of soundscape components in the Marginal Ice
                 ter noise transients from sea ice deformation: character-  Zone[J]. The Journal of the Acoustical Society of America,
                 istics, annual time series, and forcing in Beaufort Sea[J].  2016, 139(4): 1873–1885.
                 The Journal of the Acoustical Society of America, 2015,  [42] 王灵芝, 凌佳乐, 蔡萍, 等. 便携式 80∼120 MHz 频谱分析
                 138(4): 2034–2045.                                仪设计 [J]. 闽南师范学院学报 (自然科学版), 2021, 34(2):
             [30] 李启虎, 王宁, 赵进平, 等. 北极水声学: 一门引人关注的新型                79–85.
                 学科 [J]. 应用声学, 2014, 33(6): 471–483.               Wang Lingzhi, Ling Jiale, Cai Ping, et al.  Design of
                 Li Qihu, Wang Ning, Zhao Jinping, et al.  Arctic un-  portable 80∼120 MHz spectrum analyzer[J]. Journal of
                 derwater acoustics:  an attractive new topic in ocean  Zhangzhou Teachers College(Natural Science Edition),
                 acoustics[J]. Journal of Applied Acoustics, 2014, 33(6):  2021, 34(2): 79–85.
                 471–483.                                       [43] 姜佩贺, 郭刚, 吴中杰, 等. 基于 IIS2DH 的振动信号处理与传
             [31] 卫翀华, 黄海宁, 尹力, 等. 双声道波导中低频环境噪声分布                  感器设计 [J]. 仪表技术与传感器, 2021(8): 116–121.
                 特性 [J]. 声学学报, 2019, 44(4): 417–428.               Jiang Peihe, Guo Gang, Wu Zhongjie, et al. Vibration
                 Wei Chonghua, Huang Haining, Yin Li, et al. Analysis of  signal processing and sensor design based on IIS2DH[J].
                 low frequency environmental noise distribution in dual-  Instrument Technique and Sensor, 2021(8): 116–121.
   136   137   138   139   140   141   142   143   144   145   146