Page 93 - 《应用声学》2023年第4期
P. 93

第 42 卷 第 4 期              桑汉德等: 超声辅助加工系统的刀具状态自感知算法                                          755


                 of Engineering Manufacture, 2019, 233(5): 1472–1482.  [18] Li D, Xu L, Li X, et al. Full-waveform LiDAR signal fil-
             [12] Ji H, Qiu J, Wu Y, et al. Novel approach of self-sensing  tering based on empirical mode decomposition method[C].
                 actuation for active vibration control[J]. Journal of In-  2013 IEEE International Geoscience and Remote Sensing
                 telligent Material Systems and Structures, 2011, 22(5):  Symposium - IGARSS, 2013: 3399–3402.
                 449–459.                                       [19] Zhang J, Jiang Q, Ma B, et al. Signal de-noising method
                                                                   for vibration signal of flood discharge structure based on
             [13] Dong X, Yang Y, Zhang C, et al. A novel self-sensing
                                                                   combined wavelet and EMD[J]. Journal of Vibration and
                 stacking piezoelectric actuator based on structural in-
                                                                   Control, 2017, 23(15): 2401–2417.
                 tegration[C]. 5th International Conference on Informa-
                                                                [20] Chang J, Zhu L, Li H, et al. Noise reduction in Lidar
                 tion Science and Control Engineering (ICISCE), 2018:
                                                                   signal using correlation-based EMD combined with soft
                 632–635.
                                                                   thresholding and roughness penalty[J]. Optics Communi-
             [14] 李舜酩, 郭海东, 李殿荣. 振动信号处理方法综述 [J]. 仪器仪
                                                                   cations, 2018, 407: 290–295.
                 表学报, 2013, 34(8): 1907–1915.
                                                                [21] 王彬蓉, 王维博, 周超, 等. 基于 EMD 自适应重构的心音信
                 Li Shunming, Guo Haidong, Li Dianrong. Review of vi-
                                                                   号特征筛选及分类 [J]. 航天医学与医学工程, 2020, 33(6):
                 bration signal processing methods[J]. Chinese Journal of
                                                                   533–541.
                 Scientific Instrument, 2013, 34(8): 1907–1915.
                                                                   Wang Binrong, Wang Weibo, Zhou Chao, et al. Feature
             [15] Cheng W, Zhao D. EMD soft-thresholding denoising al-
                                                                   selection and classification of heart sound based on EMD
                 gorithm for rolling element bearing rotational frequency
                                                                   adaptive reconstruction[J]. Space Medicine & Medical En-
                 estimation[J]. Journal of Zhejiang University (Engineering
                                                                   gineering, 2020, 33(6): 533–541.
                 Science), 2016, 50(3): 428–435.
                                                                [22] Lee M H, Shyu K K, Lee P L, et al. Hardware implemen-
             [16] Jing S, Yuan J, Li X, et al. Weak fault feature identifica-  tation of EMD using DSP and FPGA for online signal
                 tion for rolling bearing based on emd and spectral kurto-  processing[J]. IEEE Transactions on Industrial Electron-
                 sis method[C]. 2018 International Conference on Informa-  ics, 2011, 58(6): 2473–2481.
                 tion Systems and Computer Aided Education (ICISCAE),  [23] Zhang J H, Han Y C, Li L Z, et al. An improved EMD
                 2018: 235–239.                                    time-frequency analysis method for rocket vibration sig-
             [17] 马宏伟, 张大伟, 曹现刚, 等. 基于 EMD 的振动信号去噪方法               nal[C]. Proceedings of 2014 IEEE Chinese Guidance, Nav-
                 研究 [J]. 振动与冲击, 2016, 35(22): 38–40.               igation and Control Conference, 2014: 1842–1846.
                 Ma Hongwei, Zhang Dawei, Cao Xiangang, et al. Vibra-  [24] Bhattacharyya A, Singh L, Pachori R B. Fourier-Bessel se-
                 tion signal de-noising method based on empirical mode  ries expansion based empirical wavelet transform for anal-
                 decomposition[J]. Journal of Vibration and Shock, 2016,  ysis of non-stationary signals[J]. Digital Signal Processing,
                 35(22): 38–40.                                    2018, 78: 185–196.
   88   89   90   91   92   93   94   95   96   97   98