Page 193 - 《应用声学》2024年第1期
P. 193

第 43 卷 第 1 期               徐慧等: 高频聚焦超声声场和温度场的仿真研究                                           189


                 efficacy evaluation for high intensity focused ultrasound  Fourier heat transfer modeling of HIFU treatment for
                 therapy[J]. Journal of Nanjing Normal University(Natural  thyroid cancer[J]. Computer Methods and Programs in
                 Science Edition), 2017, 40(1): 144–150.           Biomedicine, 2020, 197: 105698.
             [13] Haddadi S, Ahmadian M T. Analysis of nonlinear acous-  [24] Suomi V, Jaros J, Treeby B, et al. Full modeling of high-
                 tic wave propagation in HIFU treatment using Westervelt  intensity focused ultrasound and thermal heating in the
                 equation[J]. Scientia Iranica, 2018, 25(4): 2087–2097.  kidney using realistic patient models[J]. IEEE Transac-
             [14] Mortazavi S, Manijhe M D. Extraction of pressure and  tions on Biomedical Engineering, 2018, 65(5): 969–979.
                 temperature distribution of high intensity focused ultra-  [25] Manijhe M D. Threshold of linear and non-linear behavior
                 sound considering nonlinear propagation[J]. Journal of  of high intensity focused ultrasound (HIFU) in skin, fat,
                 Mechanics in Medicine and Biology, 2022, 22(2): 2250009.  and muscle tissue using computer simulation[J]. Iranian
             [15] Gupta P, Srivastava A. Numerical analysis of thermal re-  Journal of Medical Physics, 2022, 19(3): 181–188.
                 sponse of tissues subjected to high intensity focused ul-  [26] Solovchuk M A, Hwang S C, Chang H, et al. Temperature
                 trasound[J]. International Journal of Hyperthermia, 2018,  elevation by HIFU in ex vivo porcine muscle: MRI mea-
                 35(1): 419–434.                                   surement and simulation study[J]. Medical Physics, 2014,
             [16] 薛洪惠, 刘晓宙, 龚秀芬, 等. 聚焦超声波在层状生物媒质中的                 41(5): 052903.
                 二次谐波声场的理论与实验研究 [J]. 物理学报, 2005, 54(11):        [27] 熊正爱, 杜永洪, 龚晓波, 等. MRI 在 HIFU 治疗后随访中的
                 5233–5238.                                        作用 [J]. 重庆医科大学学报, 2005, 30(3): 452–455.
                 Xue Honghui, Liu Xiaozhou, Gong Xiufen, et al. Theo-  Xiong Zheng’ai, Du Yonghong, Gong Xiaobo, et al. The
                 retical and experimental research on the second harmonic  effect of MRI in the follow-up after HIFU[J]. Journal of
                 of focused ultrasound in layered biological media[J]. Acta  Chongqing Medical University, 2005, 30(3): 452–455.
                 Physica Sinica, 2005, 54(11): 5233–5238.       [28] Jae Lee H, Zhang S, Geng X, et al. Electroacoustic re-
             [17] Wu D L, Gao S P, Yao L, et al. Analysis of nonlinear fo-  sponse of 1-3 piezocomposite transducers for high power
                 cused ultrasound field with finite element method[C]. 2020  applications[J]. Applied Physics Letters, 2012, 101(25):
                 15th Symposium on Piezoelectrcity, Acoustic Waves and  253504.
                 Device Applications (SPAWDA), 2021: 324–328.   [29] 闫涛, 吕伟, 张建华, 等. 高强度聚焦超声治疗胰腺癌致超声通
             [18] Solovchuk M, Sheu T W H, Thiriet M. Multiphysics mod-  道损伤的机制研究 [J]. 中华损伤与修复杂志 (电子版), 2013,
                 eling of liver tumor ablation by high intensity focused ul-  8(2): 60–63.
                 trasound[J]. Communications in Computational Physics,  [30] Yin N, Hu L, Xiao Z B, et al. Factors influencing ther-
                 2015, 18(4): 1050–1071.                           mal injury to skin and abdominal wall structures in HIFU
             [19] Guo C C, Fu R Q, Lou W X. The Research of nonlinear  ablation of uterine fibroids[J]. International Journal of Hy-
                 characteristics of high intensity focused ultrasound in bi-  perthermia, 2018, 34(8): 1298–1303.
                 ological tissue[C]. 2020 5th International Conference on  [31] Laubach H J, Makin I R, Barthe P G, et al. Intense fo-
                 Mechanical, Control and Computer Engineering (ICM-  cused ultrasound: evaluation of a new treatment modality
                 CCE), 2020: 418–421.                              for precise microcoagulation within the skin[J]. Dermato-
             [20] Westervelt P J. Parametric acoustic array[J]. The Jour-  logic Surgery, 2008, 34(5): 727–734.
                 nal of the Acoustical Society of America, 1963, 35(4):  [32] 张飞, 刘晓宙, 龚秀芬. 基于有限元方法的多层生物组织温
                 535–537.                                          度场的研究 [J]. 南京大学学报 (自然科学版), 2012, 48(5):
             [21] Pennes H H. Analysis of tissue and arterial blood temper-  572–581.
                 atures in the resting human forearm[J]. Journal of Applied  Zhang Fei, Liu Xiaozhou, Gong Xiufen. Study of the tem-
                 Physiology, 1948, 1(2): 93–122.                   perature field in multilayer biological tissue using finite el-
             [22] 张平, 张晓静, 朱元光, 等. 血管位置对 HIFU 焦域温度场的               ement method[J]. Journal of Nanjing University (Natural
                 影响 [J]. 国际生物医学工程杂志, 2011, 34(1): 16–19.           Science Edition), 2012, 48(5): 572–581.
                 Zhang Ping, Zhang Xiaojing, Zhu Yuanguang, et al. Ef-  [33] 李俊伦, 刘晓宙, 章东, 等. 条状障碍物对超声非线性声场的
                 fect of blood vessel locations on high intensity focused  影响研究 [J]. 物理学报, 2006, 55(6): 2809–2814.
                 ultrasound temperature field[J]. International Journal of  Li Junlun, Liu Xiaozhou, Zhang Dong, et al. Influence
                 Biomedical Engineering, 2011, 34(1): 16–19.       of the barriers on the ultrasonic nonlinear field distribu-
             [23] Namakshenas P, Mojra A. Microstructure-based non-  tion[J]. Acta Physica Sinica, 2006, 55(6): 2809–2814.
   188   189   190   191   192   193   194   195   196   197   198