Page 193 - 《应用声学》2024年第1期
P. 193
第 43 卷 第 1 期 徐慧等: 高频聚焦超声声场和温度场的仿真研究 189
efficacy evaluation for high intensity focused ultrasound Fourier heat transfer modeling of HIFU treatment for
therapy[J]. Journal of Nanjing Normal University(Natural thyroid cancer[J]. Computer Methods and Programs in
Science Edition), 2017, 40(1): 144–150. Biomedicine, 2020, 197: 105698.
[13] Haddadi S, Ahmadian M T. Analysis of nonlinear acous- [24] Suomi V, Jaros J, Treeby B, et al. Full modeling of high-
tic wave propagation in HIFU treatment using Westervelt intensity focused ultrasound and thermal heating in the
equation[J]. Scientia Iranica, 2018, 25(4): 2087–2097. kidney using realistic patient models[J]. IEEE Transac-
[14] Mortazavi S, Manijhe M D. Extraction of pressure and tions on Biomedical Engineering, 2018, 65(5): 969–979.
temperature distribution of high intensity focused ultra- [25] Manijhe M D. Threshold of linear and non-linear behavior
sound considering nonlinear propagation[J]. Journal of of high intensity focused ultrasound (HIFU) in skin, fat,
Mechanics in Medicine and Biology, 2022, 22(2): 2250009. and muscle tissue using computer simulation[J]. Iranian
[15] Gupta P, Srivastava A. Numerical analysis of thermal re- Journal of Medical Physics, 2022, 19(3): 181–188.
sponse of tissues subjected to high intensity focused ul- [26] Solovchuk M A, Hwang S C, Chang H, et al. Temperature
trasound[J]. International Journal of Hyperthermia, 2018, elevation by HIFU in ex vivo porcine muscle: MRI mea-
35(1): 419–434. surement and simulation study[J]. Medical Physics, 2014,
[16] 薛洪惠, 刘晓宙, 龚秀芬, 等. 聚焦超声波在层状生物媒质中的 41(5): 052903.
二次谐波声场的理论与实验研究 [J]. 物理学报, 2005, 54(11): [27] 熊正爱, 杜永洪, 龚晓波, 等. MRI 在 HIFU 治疗后随访中的
5233–5238. 作用 [J]. 重庆医科大学学报, 2005, 30(3): 452–455.
Xue Honghui, Liu Xiaozhou, Gong Xiufen, et al. Theo- Xiong Zheng’ai, Du Yonghong, Gong Xiaobo, et al. The
retical and experimental research on the second harmonic effect of MRI in the follow-up after HIFU[J]. Journal of
of focused ultrasound in layered biological media[J]. Acta Chongqing Medical University, 2005, 30(3): 452–455.
Physica Sinica, 2005, 54(11): 5233–5238. [28] Jae Lee H, Zhang S, Geng X, et al. Electroacoustic re-
[17] Wu D L, Gao S P, Yao L, et al. Analysis of nonlinear fo- sponse of 1-3 piezocomposite transducers for high power
cused ultrasound field with finite element method[C]. 2020 applications[J]. Applied Physics Letters, 2012, 101(25):
15th Symposium on Piezoelectrcity, Acoustic Waves and 253504.
Device Applications (SPAWDA), 2021: 324–328. [29] 闫涛, 吕伟, 张建华, 等. 高强度聚焦超声治疗胰腺癌致超声通
[18] Solovchuk M, Sheu T W H, Thiriet M. Multiphysics mod- 道损伤的机制研究 [J]. 中华损伤与修复杂志 (电子版), 2013,
eling of liver tumor ablation by high intensity focused ul- 8(2): 60–63.
trasound[J]. Communications in Computational Physics, [30] Yin N, Hu L, Xiao Z B, et al. Factors influencing ther-
2015, 18(4): 1050–1071. mal injury to skin and abdominal wall structures in HIFU
[19] Guo C C, Fu R Q, Lou W X. The Research of nonlinear ablation of uterine fibroids[J]. International Journal of Hy-
characteristics of high intensity focused ultrasound in bi- perthermia, 2018, 34(8): 1298–1303.
ological tissue[C]. 2020 5th International Conference on [31] Laubach H J, Makin I R, Barthe P G, et al. Intense fo-
Mechanical, Control and Computer Engineering (ICM- cused ultrasound: evaluation of a new treatment modality
CCE), 2020: 418–421. for precise microcoagulation within the skin[J]. Dermato-
[20] Westervelt P J. Parametric acoustic array[J]. The Jour- logic Surgery, 2008, 34(5): 727–734.
nal of the Acoustical Society of America, 1963, 35(4): [32] 张飞, 刘晓宙, 龚秀芬. 基于有限元方法的多层生物组织温
535–537. 度场的研究 [J]. 南京大学学报 (自然科学版), 2012, 48(5):
[21] Pennes H H. Analysis of tissue and arterial blood temper- 572–581.
atures in the resting human forearm[J]. Journal of Applied Zhang Fei, Liu Xiaozhou, Gong Xiufen. Study of the tem-
Physiology, 1948, 1(2): 93–122. perature field in multilayer biological tissue using finite el-
[22] 张平, 张晓静, 朱元光, 等. 血管位置对 HIFU 焦域温度场的 ement method[J]. Journal of Nanjing University (Natural
影响 [J]. 国际生物医学工程杂志, 2011, 34(1): 16–19. Science Edition), 2012, 48(5): 572–581.
Zhang Ping, Zhang Xiaojing, Zhu Yuanguang, et al. Ef- [33] 李俊伦, 刘晓宙, 章东, 等. 条状障碍物对超声非线性声场的
fect of blood vessel locations on high intensity focused 影响研究 [J]. 物理学报, 2006, 55(6): 2809–2814.
ultrasound temperature field[J]. International Journal of Li Junlun, Liu Xiaozhou, Zhang Dong, et al. Influence
Biomedical Engineering, 2011, 34(1): 16–19. of the barriers on the ultrasonic nonlinear field distribu-
[23] Namakshenas P, Mojra A. Microstructure-based non- tion[J]. Acta Physica Sinica, 2006, 55(6): 2809–2814.