Page 216 - 《应用声学》2024年第1期
P. 216
212 2024 年 1 月
张力系数、气泡大小等参数对气泡破碎时声学特性 [10] Spencer S J, Bruniges R, Roberts G, et al. An acoustic
的影响,主要结论如下: technique for measurement of bubble solids mass loading:
(b) Monitoring of Jameson cell flotation performance by
(1) 实验发现随着气泡半径的增加,气泡破碎
passive acoustic emissions[J]. Minerals Engineering, 2012,
时声发射的特征振幅会逐渐增大,而特征频率会减 36–38: 21–30.
小;随着吹制气泡液体的表面张力系数的增加,气泡 [11] 李守恒. 电站锅炉汽水分离装置的原理和设计 [M]. 北京: 水
利电力出版社, 1986: 3–9.
破碎时声发射的特征振幅会逐渐增大,特征频率虽
[12] 续晗, 苏晓杰, 倪晓冬, 等. 压力波扰动对内燃机缸内爆震波
有变化,但总体比较平稳。 形成的影响 [J]. 燃烧科学与技术, 2021, 27(4): 343–350.
(2) 将自由空间内悬挂气泡的自然破碎时的发 Xu Han, Su Xiaojie, Ni Xiaodong, et al. Effect of pres-
sure wave disturbance on detonation formation in internal
声过程简化为脉动球面声源的辐射发声过程。当研
combustion engine[J]. Journal of Combustion Science and
究表面张力系数对气泡破碎时特征振幅的影响时, Technology, 2021, 27(4): 343–350.
公式计算结果与实验数值拟合较好;在拟合半径对 [13] 姚寿广, 甘露, 钱飞舟, 等. 某大容量 D 型锅炉对流管束卡
门涡街诱导振动分析 [J]. 江苏科技大学学报 (自然科学版),
气泡破碎时特征振幅的影响时,对气泡内外压力差
2017, 31(2): 162–166.
与破口面积进行校正,得到了气泡破碎时声发射过 Yao Shouguang, Gan Lu, Qian Feizhou, et al. Analysis of
程的特征振幅,理论推导与实验结果拟合较好。 Karmen vortex shedding induced vibration of convective
pipes for a certain D boiler[J]. Journal of Jiangsu Univer-
sity of Science and Technology (Natural Science Edition),
致谢 感谢田亮老师提供实验仪器,感谢闫运忠老 2017, 31(2): 162–166.
师提供实验场地。 [14] Spiel D E. Acoustical measurements of air bubbles burst-
ing at a water surface - Bursting bubbles as Helmholtz res-
onators[J]. Journal of Geophysical Research Oceans, 1992,
参 考 文 献 97(C7): 11443–11452.
[15] Ding J Q, Tsaur F W, Lips A, et al. Acoustical observa-
[1] 沈功田. 声发射检测技术及应用 [M]. 北京: 科学出版社, tion of bubble oscillations induced by bubble popping[J].
2015: 2–3. Physical Review E, 2007, 75(4 Pt 1): 041601.
[2] Zhao N, Li C F, Jia H J, et al. Acoustic emission-based [16] Deane G B. Determining the bubble cap film thickness
flow noise detection and mechanism analysis for gas-liquid of bursting bubbles from their acoustic emissions[J]. The
two-phase flow[J]. Measurement, 2021, 179: 109480. Journal of the Acoustical Society of America, 2013, 133(2):
[3] Boyd J, Varley J. Acoustic emission measurement of low 69–75.
velocity plunging jets to monitor bubble size[J]. Chemical [17] Husin S, Addali A, Mba D, et al. High-frequency acous-
Engineering Journal, 2004, 97(1): 11–25. tic emission and single gas bubble burst[J]. Insight, 2013,
[4] Gillot G, Simon L, Genevaux J M, et al. Automatic classi- 55(4): 197–201.
fication of hydrodynamic phenomena using their acoustic [18] Husin S, Addali A, Mba D. Observation of acoustic emis-
signature: the example of bubble entrainment during a sion from gas bubble inception and burst[J]. Proceedings
drop impact[J]. Applied Acoustics, 2022, 196: 108868. of the Institution of Mechanical Engineers Part E Journal
[5] Boyd J W R, Varley J. Measurement of gas hold-up in of Process Mechanical Engineering, 2012, 226(1): 79–88.
bubble columns from low frequency acoustic emissions[J]. [19] Divoux T, Vidal V, Melo F, et al. Acoustic emission asso-
Chemical Engineering Journal, 2002, 88(1–3): 111–118. ciated with the bursting of a gas bubble at the free surface
[6] Li J H, White P R, Roche B, et al. Acoustic and optical of a non-Newtonian fluid[J]. Physical Review E, 2008, 77(5
determination of bubble size distributions - quantification Pt 2): 056310.
of seabed gas emissions[J]. International Journal of Green- [20] Liu X B, Zhang J R, Li P. Acoustic characteristics of bub-
house Gas Control, 2021, 108: 103313. ble bursting at the surface of a high-viscosity liquid[J].
[7] Vazquez A, Manasseh R, Chicharro R. Can acoustic Chinese Physics B, 2012, 21(5): 352–356.
emissions be used to size bubbles seeping from a sedi- [21] 刘莹. 自由空间内悬挂气泡破碎行为及机理研究 [D]. 天津:
ment bed? [J]. Chemical Engineering Science, 2015, 131: 河北工业大学, 2018.
187–196. [22] 刘联胜, 王子月, 段润泽, 等. 自由空间内气泡破碎过程的实
[8] Qin D, Zou Q Q, Lei S, et al. Nonlinear dynamics and 验研究 [J]. 工程热物理学报, 2018, 39(6): 1291–1296.
acoustic emissions of interacting cavitation bubbles in vis- Liu Liansheng, Wang Ziyue, Duan Runze, et al. Ex-
coelastic tissues[J]. Ultrasonics Sonochemistry, 2021, 78: perimental study on bubble bursting process in free
105712. space[J]. Journal of Engineering Thermophysics, 2018,
[9] Tang J G, Yan C Q, Sun L C. Feature of acoustic sound 39(6): 1291–1296.
signals involved in vapor bubble condensation and its [23] 杜功焕, 朱哲民, 龚秀芬. 声学基础 [M]. 南京: 南京大学出版
application in identification of condensation regimes[J]. 社, 2012: 202–204.
Chemical Engineering Science, 2015, 137: 384–397.