Page 216 - 《应用声学》2024年第1期
P. 216

212                                                                                  2024 年 1 月


             张力系数、气泡大小等参数对气泡破碎时声学特性                             [10] Spencer S J, Bruniges R, Roberts G, et al. An acoustic
             的影响,主要结论如下:                                           technique for measurement of bubble solids mass loading:
                                                                   (b) Monitoring of Jameson cell flotation performance by
                 (1) 实验发现随着气泡半径的增加,气泡破碎
                                                                   passive acoustic emissions[J]. Minerals Engineering, 2012,
             时声发射的特征振幅会逐渐增大,而特征频率会减                                36–38: 21–30.
             小;随着吹制气泡液体的表面张力系数的增加,气泡                            [11] 李守恒. 电站锅炉汽水分离装置的原理和设计 [M]. 北京: 水
                                                                   利电力出版社, 1986: 3–9.
             破碎时声发射的特征振幅会逐渐增大,特征频率虽
                                                                [12] 续晗, 苏晓杰, 倪晓冬, 等. 压力波扰动对内燃机缸内爆震波
             有变化,但总体比较平稳。                                          形成的影响 [J]. 燃烧科学与技术, 2021, 27(4): 343–350.
                 (2) 将自由空间内悬挂气泡的自然破碎时的发                            Xu Han, Su Xiaojie, Ni Xiaodong, et al. Effect of pres-
                                                                   sure wave disturbance on detonation formation in internal
             声过程简化为脉动球面声源的辐射发声过程。当研
                                                                   combustion engine[J]. Journal of Combustion Science and
             究表面张力系数对气泡破碎时特征振幅的影响时,                                Technology, 2021, 27(4): 343–350.
             公式计算结果与实验数值拟合较好;在拟合半径对                             [13] 姚寿广, 甘露, 钱飞舟, 等. 某大容量 D 型锅炉对流管束卡
                                                                   门涡街诱导振动分析 [J]. 江苏科技大学学报 (自然科学版),
             气泡破碎时特征振幅的影响时,对气泡内外压力差
                                                                   2017, 31(2): 162–166.
             与破口面积进行校正,得到了气泡破碎时声发射过                                Yao Shouguang, Gan Lu, Qian Feizhou, et al. Analysis of
             程的特征振幅,理论推导与实验结果拟合较好。                                 Karmen vortex shedding induced vibration of convective
                                                                   pipes for a certain D boiler[J]. Journal of Jiangsu Univer-
                                                                   sity of Science and Technology (Natural Science Edition),
             致谢 感谢田亮老师提供实验仪器,感谢闫运忠老                                2017, 31(2): 162–166.
             师提供实验场地。                                           [14] Spiel D E. Acoustical measurements of air bubbles burst-
                                                                   ing at a water surface - Bursting bubbles as Helmholtz res-
                                                                   onators[J]. Journal of Geophysical Research Oceans, 1992,
                            参 考     文   献                          97(C7): 11443–11452.
                                                                [15] Ding J Q, Tsaur F W, Lips A, et al. Acoustical observa-
              [1] 沈功田. 声发射检测技术及应用 [M]. 北京: 科学出版社,                  tion of bubble oscillations induced by bubble popping[J].
                 2015: 2–3.                                        Physical Review E, 2007, 75(4 Pt 1): 041601.
              [2] Zhao N, Li C F, Jia H J, et al. Acoustic emission-based  [16] Deane G B. Determining the bubble cap film thickness
                 flow noise detection and mechanism analysis for gas-liquid  of bursting bubbles from their acoustic emissions[J]. The
                 two-phase flow[J]. Measurement, 2021, 179: 109480.  Journal of the Acoustical Society of America, 2013, 133(2):
              [3] Boyd J, Varley J. Acoustic emission measurement of low  69–75.
                 velocity plunging jets to monitor bubble size[J]. Chemical  [17] Husin S, Addali A, Mba D, et al. High-frequency acous-
                 Engineering Journal, 2004, 97(1): 11–25.          tic emission and single gas bubble burst[J]. Insight, 2013,
              [4] Gillot G, Simon L, Genevaux J M, et al. Automatic classi-  55(4): 197–201.
                 fication of hydrodynamic phenomena using their acoustic  [18] Husin S, Addali A, Mba D. Observation of acoustic emis-
                 signature: the example of bubble entrainment during a  sion from gas bubble inception and burst[J]. Proceedings
                 drop impact[J]. Applied Acoustics, 2022, 196: 108868.  of the Institution of Mechanical Engineers Part E Journal
              [5] Boyd J W R, Varley J. Measurement of gas hold-up in  of Process Mechanical Engineering, 2012, 226(1): 79–88.
                 bubble columns from low frequency acoustic emissions[J].  [19] Divoux T, Vidal V, Melo F, et al. Acoustic emission asso-
                 Chemical Engineering Journal, 2002, 88(1–3): 111–118.  ciated with the bursting of a gas bubble at the free surface
              [6] Li J H, White P R, Roche B, et al. Acoustic and optical  of a non-Newtonian fluid[J]. Physical Review E, 2008, 77(5
                 determination of bubble size distributions - quantification  Pt 2): 056310.
                 of seabed gas emissions[J]. International Journal of Green-  [20] Liu X B, Zhang J R, Li P. Acoustic characteristics of bub-
                 house Gas Control, 2021, 108: 103313.             ble bursting at the surface of a high-viscosity liquid[J].
              [7] Vazquez A, Manasseh R, Chicharro R. Can acoustic  Chinese Physics B, 2012, 21(5): 352–356.
                 emissions be used to size bubbles seeping from a sedi-  [21] 刘莹. 自由空间内悬挂气泡破碎行为及机理研究 [D]. 天津:
                 ment bed? [J]. Chemical Engineering Science, 2015, 131:  河北工业大学, 2018.
                 187–196.                                       [22] 刘联胜, 王子月, 段润泽, 等. 自由空间内气泡破碎过程的实
              [8] Qin D, Zou Q Q, Lei S, et al. Nonlinear dynamics and  验研究 [J]. 工程热物理学报, 2018, 39(6): 1291–1296.
                 acoustic emissions of interacting cavitation bubbles in vis-  Liu Liansheng, Wang Ziyue, Duan Runze, et al.  Ex-
                 coelastic tissues[J]. Ultrasonics Sonochemistry, 2021, 78:  perimental study on bubble bursting process in free
                 105712.                                           space[J]. Journal of Engineering Thermophysics, 2018,
              [9] Tang J G, Yan C Q, Sun L C. Feature of acoustic sound  39(6): 1291–1296.
                 signals involved in vapor bubble condensation and its  [23] 杜功焕, 朱哲民, 龚秀芬. 声学基础 [M]. 南京: 南京大学出版
                 application in identification of condensation regimes[J].  社, 2012: 202–204.
                 Chemical Engineering Science, 2015, 137: 384–397.
   211   212   213   214   215   216   217   218   219   220   221