Page 185 - 《应用声学》2025年第1期
P. 185

第 44 卷 第 1 期              聂磊鑫等: 高斯过程辅助的船舶辐射噪声分类算法                                           181


                 3-D Mel-spectrogram and data augmentation[J]. Applied  Applied Acoustics, 2016, 113: 64–69.
                 Acoustics, 2021, 178: 107989.                  [18] Nie L X, Li C, Wang H B, et al. Open-set recognition
             [13] 李理, 李向欣, 殷敬伟. 基于生成对抗网络的舰船辐射噪声分                   for deep neural networks-based underwater acoustic tar-
                 类方法研究 [J]. 电子与信息学报, 2022, 44(6): 1974–1983.       get classification[C]//OCEANS 2021: San Diego–Porto.
                 Li Li, Li Xiangxin, Yin Jingwei. Research on classification  September 20-23, 2021. San Diego, CA, USA. IEEE, 2021:
                 algorithm of ship radiated noise data based on generative  1–5.
                 adversarial network[J]. Journal of Electronics & Informa-  [19] 倪俊帅, 赵梅, 胡长青. 基于 DNN 和改进 K-means 的船舶辐
                 tion Technology, 2022, 44(6): 1974–1983.          射噪声开集识别方法 [J]. 声学技术, 2022, 41(3): 382–387.
             [14] de Castro Vargas Fernandes J, de Moura N N Jr, de Seixas  Ni Junshuai, Zhao Mei, Hu Changqing. DNN and im-
                 J M. Deep learning models for passive sonar signal classi-  proved K-means based ship noise open set recognition[J].
                 fication of military data[J]. Remote Sensing, 2022, 14(11):  Technical Acoustics, 2022, 41(3): 382–387.
                 2648.                                          [20] Zhang H, Cissé M, Dauphin Y N, et al. mixup: Beyond
             [15] Mohri M, Rostamizadeh A, Talwalkar A. Foundations of  empirical risk minimization[C]//6th International Confer-
                 machine learning[M]. Cambridge, MA: MIT Press, 2018.  ence on Learning Representations. Vancouver, Canada,
             [16] Rasmussen C E, Williams C K I. Gaussian processes  2018: 1–13.
                 for machine learning[M]. Cambridge, Mass.: MIT Press,  [21] He K, Zhang X, Ren S, et al.  Deep residual learn-
                 2006.                                             ing for image recognition[C]//Proceedings of the IEEE
             [17] Santos-Domínguez D, Torres-Guijarro S, Cardenal-López  Conference on Computer Vision and Pattern Recognition
                 A, et al. ShipsEar: An underwater vessel noise database[J].  (CVPR). Las Vegas, NV, USA: IEEE, 2016: 770–778.
   180   181   182   183   184   185   186   187   188   189   190