Page 255 - 《应用声学》2025年第1期
P. 255

第 44 卷 第 1 期       龙士国等: 基于 LabVIEW 的智能建筑外墙饰面砖脱空识别软件开发                                      251


             基于声音信号分析的脱空识别方法,结合首波幅值                                pressure and flow monitoring[J]. Measurement, 2022, 190:
             和小波系数积分比特征,经拉依达准则预处理后的                                110705.
                                                                 [9] Nithyaa A N, Premkumar R, Dhivya S, et al. A real
             数据运用 KNN算法构建识别模型。在此基础上,开
                                                                   time foot pressure measurement for early detection of ul-
             发了智能建筑外墙饰面砖脱空识别软件,对外墙试                                cer formation in diabetics patients using labview[J]. Pro-
             件进行饰面砖脱空实验验证其性能,实验结果表明,                               cedia Engineering, 2013, 64: 1302–1309.
             脱空识别率达到 92%。该软件界面直观,操作简单,                          [10] 张国才, 游泳, 沈洋, 等. 脉冲超声换能器声场测试系统的设
                                                                   计 [J]. 应用声学, 2020, 39(6): 876–884.
             表现出良好的运行性能和较高的可靠性,可在实际
                                                                   Zhang Guocai, You Yong, Shen Yang, et al.  De-
             工程应用中帮助快速准确地识别饰面砖脱空。脱空                                sign of sound field testing system of pulsed ultrasonic
             边界仍存在一定的误判率,未来的研究将优化分类                                transducer[J]. Journal of Applied Acoustics, 2020, 39(6):
             算法与模型,以提高脱空边界的识别准确率。                                  876–884.
                                                                [11] Bo L, Liu X F, He X X. Measurement system for wind
                                                                   turbines noises assessment based on LabVIEW[J]. Mea-
                            参 考     文   献                          surement, 2011, 44(2): 445–453.
                                                                [12] 向博伦. 基于冲击弹性波法检测混凝土结构抗冻性研究 [D].
              [1] 王璞瑾, 肖建庄, 段珍华, 等. 建筑物外立面损伤检测智能化                  大连: 大连理工大学, 2021.
                 发展趋势 [J]. 建筑科学与工程学报, 2022, 39(4): 24–37.       [13] Sun D Y, Goktogan A J. Tiled-facade condition assess-
                 Wang Pujin, Xiao Jianzhuang, Duan Zhenhua, et al. In-  ment using fourier and wavelet features of impact-acoustic
                 telligent development trend of building enclosure damage  signals and support vector machine[C]//Australasian
                 detection[J]. Journal of Architecture and Civil Engineer-  Conference on Robotics and Automation, 2018.
                 ing, 2022, 39(4): 24–37.                       [14] Yao F, Chen G, Abula A. Research on signal processing
              [2] 赵舒祎, 胡长明, 张宏丽. 基于组合赋权云模型的外墙瓷砖脱                   of segment-grout defect in tunnel based on impact-echo
                 落因素分析 [J]. 工业安全与环保, 2023, 49(9): 6–10.            method[J]. Construction and Building Materials, 2018,
                 Zhao Shuyi, Hu Changming, Zhang Hongli. Analysis of  187: 280–289.
                 shedding factors of exterior wall tiles based on combined  [15] 姚菲, 陆幸奇, 陈光宇. 基于冲击回波法的混凝土 -围岩缺陷
                 weighting cloud model[J]. Industrial Safety and Environ-  检测与信号处理研究 [J]. 铁道科学与工程学报, 2021, 18(9):
                 mental Protection, 2023, 49(9): 6–10.             2316–2323.
              [3] Soeta T, Ito S, Fujinuma T, et al.  Trial inspection  Yao Fei, Lu Xingqi, Chen Guangyu. Experimental and
                 of exterior-tile wall specimens with a prototyped tile-  signal processing research on concrete-rock structural de-
                 debonding diagnostic device[J]. Japan Architectural Re-  fects by impact-echo method[J]. Journal of Railway Sci-
                 view, 2021, 4(1): 28–40.                          ence and Engineering, 2021, 18(9): 2316–2323.
              [4] Inoue F, Doi S, Ishizaki T, et al. Study on automated in-  [16] Kang S, Yu J D, Hong W T, et al. Estimation of cavities
                 spection robot and quantitative detection of outer tile wall  beneath plate structures using a microphone: Laboratory
                 exfoliation by wavelet analysis[C]// International Confer-  model tests[J]. Sensors, 2021, 21(9): 2941.
                 ence on Control, Automation and System. IEEE, 2010:  [17] 周欣磊, 顾海挺, 刘晶, 等. 基于集成学习与深度学习的日
                 994–999.                                          供水量预测方法 [J]. 浙江大学学报 (工学版), 2023, 57(6):
              [5] Luk B L, Liu K P, Tong F, et al. Impact-acoustics in-  1120–1127.
                 spection of tile-wall bonding integrity via wavelet trans-  Zhou Xinlei, Gu Haiting, Liu Jing, et al.  Daily wa-
                 form and hidden Markov models[J]. Journal of Sound and  ter supply prediction method based on integrated learn-
                 Vibration, 2010, 329(10): 1954–1967.              ing and deep learning[J]. Journal of Zhejiang Univer-
              [6] Sugimoto T, Sugimoto K, Uechi I, et al. Efficiency im-  sity(Engineering Science), 2023, 57(6): 1120–1127.
                 provement of outer wall inspection by noncontact acous-  [18] Sugimoto K, Akamatsu R, Sugimoto T, et al. Defect-
                 tic inspection method using sound source mounted type  detection algorithm for noncontact acoustic inspection
                 UAV[C]// International Ultrasonics Symposium. IEEE,  using spectrum entropy[J]. Japanese Journal of Applied
                 2019: 2091–2094.                                  Physics, 2015, 54(7S1): 07HC15.
              [7] 刘素贞, 饶诺歆, 张闯, 等. 基于 LabVIEW 的电磁超声无损检          [19] Taunk K, De S, Verma S, et al. A brief review of near-
                 测系统的设计 [J]. 电工技术学报, 2018, 33(10): 2274–2281.      est neighbor algorithm for learning and classification[C]//
                 Liu Suzhen, Rao Nuoxin, Zhang Chuang, et al. Design of  International Conference on Intelligent Computing and
                 electromagnetic ultrasonic nondestructive testing system  Control Systems. IEEE, 2019: 1255–1260.
                 based on LabVIEW[J]. Transactions of China Electrotech-  [20] Saini I, Singh D, Khosla A. QRS detection using K-nearest
                 nical Society, 2018, 33(10): 2274–2281.           neighbor algorithm (KNN) and evaluation on standard
              [8] Liu M, Wu Y, Song H, et al. Multiparameter measuring  ECG databases[J]. Journal of Advanced Research, 2013,
                 system using fiber optic sensors for hydraulic temperature,  4(4): 331–344.
   250   251   252   253   254   255   256   257   258   259   260