Page 14 - 《应用声学》2025年第2期
P. 14
274 2025 年 3 月
1824–1829. and Modeling in Mechanobiology, 2018, 17(5): 1269–1279.
[14] Faran J J Jr. Sound scattering by solid cylinders and [27] Sekar S K V, Bargigia I, Mora A D, et al. Diffuse optical
spheres[J]. The Journal of the Acoustical Society of Amer- characterization of collagen absorption from 500 to 1700
ica, 1951, 23(4): 405–418. nm[J]. Journal of Biomedical Optics, 2017, 22(1): 15006.
[15] Wear K A. Frequency dependence of ultrasonic backscat- [28] Feng T, Zhu Y H, Kozloff K M, et al. Bone chemical com-
ter from human trabecular bone: Theory and experi- position assessment with multi-wavelength photoacoustic
ment[J]. The Journal of the Acoustical Society of America, analysis[J]. Applied Sciences, 2020, 10(22): 8214.
1999, 106(6): 3659–3664. [29] Ding R, Zhang J X, Koushki E, et al. Nonlinear pho-
[16] Wear K A, Harris G R. Frequency dependence of backscat- toacoustic and optical properties of hydroxyapatite and
ter from thin, oblique, finite-length cylinders measured calcium phosphate. Towards a new method for the den-
with a focused transducer-with applications in cancellous sitometry of bones[J]. Optik, 2021, 226: 165922.
bone[J]. The Journal of the Acoustical Society of America, [30] 安荣荣, 骆晓森, 沈中华, 等. 脂肪组织中异物弹性影响激光
2008, 124(5): 3309–3314. 超声的数值模拟 [J]. 南京大学学报 (自然科学), 2011, 47(2):
[17] Litniewski J, Cieslik L, Wojcik J, et al. Statistics of the 164–170.
envelope of ultrasonic backscatter from human trabecular An Rongrong, Luo Xiaosen, Shen Zhonghua, et al. Nu-
bone[J]. The Journal of the Acoustical Society of America, merical simulation of laser ultrasonics in an adipose tissue
2011, 130(4): 2224–2232. affected by the elastic modulus of foreign bodies[J]. Jour-
[18] Ta D A, Wang W Q, Huang K, et al. Analysis of fre- nal of Nanjing University (Natural Sciences), 2011, 47(2):
quency dependence of ultrasonic backscatter coefficient in 164–170.
cancellous bone[J]. The Journal of the Acoustical Society [31] Lashkari B, Mandelis A. Coregistered photoacoustic and
of America, 2008, 124(6): 4083–4090. ultrasonic signatures of early bone density variations[J].
[19] Shankar P M. A general statistical model for ultrasonic Journal of Biomedical Optics, 2014, 19(3): 36015.
backscattering from tissues[J]. IEEE Transactions on Ul- [32] Steinberg I, Hershkovich H S, Gannot I, et al. Theoretical
trasonics, Ferroelectrics, and Frequency Control, 2000, and experimental investigation of multispectral photoa-
47(3): 727–736. coustic osteoporosis detection method[C]//Photons Plus
[20] Bone density check ultrasound bone densitometer for Ultrasound: Imaging and Sensing 2014. San Francisco,
checking osteoporosis[EB/OL]. https://longcaremed.en. California, USA. SPIE, 2014: 89434.
made-in-china.com/product/itGUXsJEVTWb/China- [33] Chen H L, Li Y, Tran T N, et al. Wave mode variation
Bone-Density-Check-Ultrasound-Bone-Densitometer-for- of multi-wavelength photoacoustic guided waves in corti-
Checking-Osteoporosis.html. cal bone[J]. Journal of Physics: Conference Series, 2024,
[21] 他得安, 刘镇清, 田光春. 超声导波在管材中的传播特性 [J]. 2822(1): 012019.
声学技术, 2001, 20(3): 131–134. [34] 张经科, 何琼, 罗建文. 平面波超声成像中的波束合成方法研
Ta De’an, Liu Zhenqing, Tian Guangchun. Propaga- 究进展 [J]. 应用声学, 2021, 40(1): 22–32.
tion characteristics of ultrasonic guided-waves in pipes[J]. Zhang Jingke, He Qiong, Luo Jianwen. Research progress
Technical Acoustics, 2001, 20(3): 131–134. of beamforming methods in plane-wave ultrasound imag-
[22] 他得安, 刘镇清. 充粘液管材中超声纵向轴对称导波的频散特 ing[J]. Journal of Applied Acoustics, 2021, 40(1): 22–32.
性分析 [J]. 声学学报, 2005, 30(3): 193–200. [35] 李云清, 江晨, 李颖, 等. 基于多层声速模型的合成孔径超声
Ta De’an, Liu Zhenqing. Analysis of dispersion charac- 皮质骨成像 [J]. 物理学报, 2019, 68(18): 134–143.
teristics of ultrasonic longitudinal axisymmetric guided- Li Yunqing, Jiang Chen, Li Ying, et al. Multi-layer ve-
waves in viscous liquid-filled pipes[J]. Acta Acustica, 2005, locity model based synthetic aperture ultrasound imag-
30(3): 193–200. ing of cortical bone[J]. Acta Physica Sinica, 2019, 68(18):
[23] Sarvazyan A, Tatarinov A, Egorov V, et al. Application 134–143.
of the dual-frequency ultrasonometer for osteoporosis de- [36] 李倩岩, 苏畅, 林伟军, 等. 平面波经颅超声成像相位校正及
tection[J]. Ultrasonics, 2009, 49(3): 331–337. 散斑跟踪 [J]. 应用声学, 2022, 41(1): 132–142.
[24] Tatarinov A, Egorov V, Sarvazyan N, et al. Multi- Li Qianyan, Su Chang, Lin Weijun, et al. Phase correc-
frequency axial transmission bone ultrasonometer[J]. Ul- tion and speckle tracking in plane wave transcranial ul-
trasonics, 2014, 54(5): 1162–1169. trasound imaging[J]. Journal of Applied Acoustics, 2022,
[25] Vallet Q, Bochud N, Chappard C, et al. In vivo charac- 41(1): 132–142.
terization of cortical bone using guided waves measured [37] 周江锦, 郭远洋, 周宸宸, 等. 深度学习颅骨重建和平面波经
by axial transmission[J]. IEEE Transactions on Ultrason- 颅超声成像方法 [J]. 声学学报, 2024, 49(3): 381–391.
ics, Ferroelectrics, and Frequency Control, 2016, 63(9): Zhou Jiangjin, Guo Yuanyang, Zhou Chenchen, et al.
1361–1371. Deep learning-based skull reconstruction and aberration
[26] Tran T N H T, Le L H, Sacchi M D, et al. Sensitivity correction method for transcranial ultrasound plane-wave
analysis of ultrasonic guided waves propagating in trilay- imaging[J]. Acta Acustica, 2024, 49(3): 381–391.
ered bone models: A numerical study[J]. Biomechanics [38] 张芸芸, 李义方, 石勤振, 等. 基于相位迁移的超声平面波多