Page 14 - 《应用声学》2025年第2期
P. 14

274                                                                                  2025 年 3 月


                 1824–1829.                                        and Modeling in Mechanobiology, 2018, 17(5): 1269–1279.
             [14] Faran J J Jr. Sound scattering by solid cylinders and  [27] Sekar S K V, Bargigia I, Mora A D, et al. Diffuse optical
                 spheres[J]. The Journal of the Acoustical Society of Amer-  characterization of collagen absorption from 500 to 1700
                 ica, 1951, 23(4): 405–418.                        nm[J]. Journal of Biomedical Optics, 2017, 22(1): 15006.
             [15] Wear K A. Frequency dependence of ultrasonic backscat-  [28] Feng T, Zhu Y H, Kozloff K M, et al. Bone chemical com-
                 ter from human trabecular bone: Theory and experi-  position assessment with multi-wavelength photoacoustic
                 ment[J]. The Journal of the Acoustical Society of America,  analysis[J]. Applied Sciences, 2020, 10(22): 8214.
                 1999, 106(6): 3659–3664.                       [29] Ding R, Zhang J X, Koushki E, et al. Nonlinear pho-
             [16] Wear K A, Harris G R. Frequency dependence of backscat-  toacoustic and optical properties of hydroxyapatite and
                 ter from thin, oblique, finite-length cylinders measured  calcium phosphate. Towards a new method for the den-
                 with a focused transducer-with applications in cancellous  sitometry of bones[J]. Optik, 2021, 226: 165922.
                 bone[J]. The Journal of the Acoustical Society of America,  [30] 安荣荣, 骆晓森, 沈中华, 等. 脂肪组织中异物弹性影响激光
                 2008, 124(5): 3309–3314.                          超声的数值模拟 [J]. 南京大学学报 (自然科学), 2011, 47(2):
             [17] Litniewski J, Cieslik L, Wojcik J, et al. Statistics of the  164–170.
                 envelope of ultrasonic backscatter from human trabecular  An Rongrong, Luo Xiaosen, Shen Zhonghua, et al. Nu-
                 bone[J]. The Journal of the Acoustical Society of America,  merical simulation of laser ultrasonics in an adipose tissue
                 2011, 130(4): 2224–2232.                          affected by the elastic modulus of foreign bodies[J]. Jour-
             [18] Ta D A, Wang W Q, Huang K, et al. Analysis of fre-  nal of Nanjing University (Natural Sciences), 2011, 47(2):
                 quency dependence of ultrasonic backscatter coefficient in  164–170.
                 cancellous bone[J]. The Journal of the Acoustical Society  [31] Lashkari B, Mandelis A. Coregistered photoacoustic and
                 of America, 2008, 124(6): 4083–4090.              ultrasonic signatures of early bone density variations[J].
             [19] Shankar P M. A general statistical model for ultrasonic  Journal of Biomedical Optics, 2014, 19(3): 36015.
                 backscattering from tissues[J]. IEEE Transactions on Ul-  [32] Steinberg I, Hershkovich H S, Gannot I, et al. Theoretical
                 trasonics, Ferroelectrics, and Frequency Control, 2000,  and experimental investigation of multispectral photoa-
                 47(3): 727–736.                                   coustic osteoporosis detection method[C]//Photons Plus
             [20] Bone density check ultrasound bone densitometer for  Ultrasound: Imaging and Sensing 2014. San Francisco,
                 checking osteoporosis[EB/OL]. https://longcaremed.en.  California, USA. SPIE, 2014: 89434.
                 made-in-china.com/product/itGUXsJEVTWb/China-  [33] Chen H L, Li Y, Tran T N, et al. Wave mode variation
                 Bone-Density-Check-Ultrasound-Bone-Densitometer-for-  of multi-wavelength photoacoustic guided waves in corti-
                 Checking-Osteoporosis.html.                       cal bone[J]. Journal of Physics: Conference Series, 2024,
             [21] 他得安, 刘镇清, 田光春. 超声导波在管材中的传播特性 [J].                2822(1): 012019.
                 声学技术, 2001, 20(3): 131–134.                    [34] 张经科, 何琼, 罗建文. 平面波超声成像中的波束合成方法研
                 Ta De’an, Liu Zhenqing, Tian Guangchun.  Propaga-  究进展 [J]. 应用声学, 2021, 40(1): 22–32.
                 tion characteristics of ultrasonic guided-waves in pipes[J].  Zhang Jingke, He Qiong, Luo Jianwen. Research progress
                 Technical Acoustics, 2001, 20(3): 131–134.        of beamforming methods in plane-wave ultrasound imag-
             [22] 他得安, 刘镇清. 充粘液管材中超声纵向轴对称导波的频散特                    ing[J]. Journal of Applied Acoustics, 2021, 40(1): 22–32.
                 性分析 [J]. 声学学报, 2005, 30(3): 193–200.           [35] 李云清, 江晨, 李颖, 等. 基于多层声速模型的合成孔径超声
                 Ta De’an, Liu Zhenqing. Analysis of dispersion charac-  皮质骨成像 [J]. 物理学报, 2019, 68(18): 134–143.
                 teristics of ultrasonic longitudinal axisymmetric guided-  Li Yunqing, Jiang Chen, Li Ying, et al. Multi-layer ve-
                 waves in viscous liquid-filled pipes[J]. Acta Acustica, 2005,  locity model based synthetic aperture ultrasound imag-
                 30(3): 193–200.                                   ing of cortical bone[J]. Acta Physica Sinica, 2019, 68(18):
             [23] Sarvazyan A, Tatarinov A, Egorov V, et al. Application  134–143.
                 of the dual-frequency ultrasonometer for osteoporosis de-  [36] 李倩岩, 苏畅, 林伟军, 等. 平面波经颅超声成像相位校正及
                 tection[J]. Ultrasonics, 2009, 49(3): 331–337.    散斑跟踪 [J]. 应用声学, 2022, 41(1): 132–142.
             [24] Tatarinov A, Egorov V, Sarvazyan N, et al.  Multi-  Li Qianyan, Su Chang, Lin Weijun, et al. Phase correc-
                 frequency axial transmission bone ultrasonometer[J]. Ul-  tion and speckle tracking in plane wave transcranial ul-
                 trasonics, 2014, 54(5): 1162–1169.                trasound imaging[J]. Journal of Applied Acoustics, 2022,
             [25] Vallet Q, Bochud N, Chappard C, et al. In vivo charac-  41(1): 132–142.
                 terization of cortical bone using guided waves measured  [37] 周江锦, 郭远洋, 周宸宸, 等. 深度学习颅骨重建和平面波经
                 by axial transmission[J]. IEEE Transactions on Ultrason-  颅超声成像方法 [J]. 声学学报, 2024, 49(3): 381–391.
                 ics, Ferroelectrics, and Frequency Control, 2016, 63(9):  Zhou Jiangjin, Guo Yuanyang, Zhou Chenchen, et al.
                 1361–1371.                                        Deep learning-based skull reconstruction and aberration
             [26] Tran T N H T, Le L H, Sacchi M D, et al. Sensitivity  correction method for transcranial ultrasound plane-wave
                 analysis of ultrasonic guided waves propagating in trilay-  imaging[J]. Acta Acustica, 2024, 49(3): 381–391.
                 ered bone models: A numerical study[J]. Biomechanics  [38] 张芸芸, 李义方, 石勤振, 等. 基于相位迁移的超声平面波多
   9   10   11   12   13   14   15   16   17   18   19