Page 15 - 《应用声学》2025年第2期
P. 15

第 44 卷 第 2 期                  陈洪磊等: 定量超声骨检测技术研究进展                                           275


                 层皮质骨成像 [J]. 物理学报, 2023, 72(15): 127–136.          Computer Methods and Programs in Biomedicine, 2023,
                 Zhang Yunyun, Li Yifang, Shi Qinzhen, et al. Phase shift  231: 107404.
                 migration based plane-wave imaging of cortical bone[J].  [45] Suo M, Zhang D, Yang H Q, et al.  Data-driven full
                 Acta Physica Sinica, 2023, 72(15): 127–136.       waveform inversion for ultrasonic bone quantitative imag-
             [39] 谢强, 李博艺, 杨春山, 等. 基于超声 -光声多模态成像仪器                 ing[J]. Neural Computing and Applications, 2023, 35(36):
                 的骨结构及成分高分辨率表征方法 [J]. 仪器仪表学报, 2024,                25027–25043.
                 45(6): 177–187.                                [46] Gonzalez E A, Bell M A L. Photoacoustic imaging and
                 Xie Qiang, Li Boyi, Yang Chunshan, et al.  High-  characterization of bone in medicine: Overview, applica-
                 resolution characterization of bone structure and compo-  tions, and outlook[J]. Annual Review of Biomedical Engi-
                 sition based on an ultrasonic-photoacoustic multimodal  neering, 2023, 25: 207–232.
                 imaging instrument[J]. Chinese Journal of Scientific In-  [47] 封婷, 解维娅, 徐文逸, 等. 光声骨检测研究进展 [J]. 科学通
                 strument, 2024, 45(6): 177–187.                   报, 2023, 68(26): 3437–3454.
             [40] 张晓毓. 超声全波形反演在骨定量测量中的应用研究 [D]. 武                  Feng Ting, Xie Weiya, Xu Wenyi, et al. Photoacoustic
                 汉: 武汉大学, 2018.                                    bone characterization: A progress review[J]. Chinese Sci-
             [41] Li Y F, Shi Q Z, Li Y, et al.  High-resolution bone  ence Bulletin, 2023, 68(26): 3437–3454.
                 microstructure imaging based on ultrasonic frequency-  [48] Park E Y, Lee D, Lee C, et al. Non-ionizing label-free
                 domain full-waveform inversion[J]. Chinese Physics B,  photoacoustic imaging of bones[J]. IEEE Access, 2020, 8:
                 2021, 30(1): 014302.                              160915–160920.
             [42] Zhou C C, Xu K L, Ta D A. Frequency-domain    [49] Wang J X, Li B Y, Zhou T H, et al. Reconstructing can-
                 full-waveform inversion-based musculoskeletal ultrasound  cellous bone from down-sampled optical-resolution pho-
                 computed tomography[J]. The Journal of the Acoustical  toacoustic microscopy images with deep learning[J]. Ul-
                 Society of America, 2023, 154(1): 279–294.        trasound in Medicine & Biology, 2024, 50(9): 1459–1471.
             [43] 贾琰, 陈玥甫, 江晨, 等. 动态监测骨质疏松性微结构退化的               [50] Chen P P, Liu C C, Feng T, et al. Improved photoacous-
                 超声全波反演方法 [J]. 声学学报, 2023, 48(6): 1189–1198.       tic imaging of numerical bone model based on attention
                 Jia Yan, Chen Yuefu, Jiang Chen, et al.  Ultra-   block U-Net deep learning network[J]. Applied Sciences,
                 sonic full-waveform inversion for dynamically monitoring  2020, 10(22): 8089.
                 bone micro-structure deterioration in osteoporosis pro-  [51] Cao R, Nelson S D, Davis S, et al. Label-free intraop-
                 gression[J]. Acta Acustica, 2023, 48(6): 1189–1198.  erative histology of bone tissue via deep-learning-assisted
             [44] Suo M, Zhang D, Yang H Q, et al. Application of full  ultraviolet photoacoustic microscopy[J]. Nature Biomedi-
                 waveform inversion algorithm in Laplace–Fourier domain  cal Engineering, 2023, 7(2): 124–134.
                 for high-contrast ultrasonic bone quantitative imaging[J].
   10   11   12   13   14   15   16   17   18   19   20