Page 252 - 《应用声学》2025年第2期
P. 252

512                                                                                  2025 年 3 月


                                                                 [3] Brinksmeier E, Heinzel C, Meyer L. Development and ap-
             4 结论                                                  plication of a wheel based process monitoring system in
                                                                   grinding[J]. CIRP Annals, 2005, 54(1): 301–304.
                 本文通过分析插齿刀磨削过程中不同砂轮磨                             [4] Yoshida T, Karasawa H, Fukui R, et al. Analysis of chip
                                                                   size distribution using image processing technology to esti-
             损状态下的 AE 信号,基于 AE 和 SVM 建立了可实
                                                                   mate wear state of cylindrical grinding wheel[J]. Tribology
             时监测砂轮磨损监测平台。首先分析了插刀磨磨削                                International, 2021, 153: 106600.
             原理,这种非连续磨削行为对实时监测造成不便,并                             [5] Nikiforov I, Maltsev P, Kulakova M. Grinding wheel mon-
             且该磨削方式和传感器的安装方式会使磨削信号                                 itoring system[C]. Environment. Technology. Resources.
                                                                   Proceedings of the International Scientific and Practical
             产生一定的噪声。为了提取有效磨削信号,采用滤
                                                                   Conference, 2019.
             波的方法对其展成分量及其他因素产生的噪声进                               [6] Ahmer M, Marklund P, Gustafsson M, et al. Integra-
             行过滤,最终得到了接近实际工况下的磨削 AE 信                              tion of process monitoring and machine condition diagnos-
                                                                   tics to improve quality prediction in grinding[J]. Procedia
             号。对实验过程磨削信号进行时域 RMS 能量分析,
                                                                   CIRP, 2021, 101: 170–173.
             根据理论砂轮钝化能量曲线划分了插刀磨砂轮钝                               [7] Wang S, Zhao Q L, Wu T. An investigation of monitor-
             化状态节点,将其分类标签,为多分类模型做好数据                               ing the damage mechanism in ultra-precision grinding of
             准备。采用小波包变换提取磨削信号频域特征,并                                monocrystalline silicon based on AE signals processing[J].
                                                                   Journal of Manufacturing Processes, 2022, 81: 945–961.
             优化各特征参数组合对模型性能的影响,最终提取                              [8] 尹国强, 王东, 关云匀, 等. 基于声发射监测的砂轮磨损实
             了9 维故障特征参数作为多分类 SVM 模型的输入,                            验 [J]. 东北大学学报 (自然科学版), 2022, 43(8): 1127–1133.
             砂轮磨损状态作为输出,实现了对非连续磨削产生                                Yin Guoqiang, Wang Dong, Guan Yunyun, et al. Grind-
                                                                   ing wheel wear experiment based on acoustic emis-
             时变非稳定信号的实时监测。
                                                                   sion monitoring[J]. Journal of Northeastern Univer-
                 最终,模型准确率可达 0.91,ROC 曲线性能指                         sity(Natural Science), 2022, 43(8): 1127–1133.
             标AUC高达0.96,同时该多分类模型性能优于朴素                           [9] 钟利民, 李丽娟, 杨京, 等. HDP-HSMM 的磨削声发射砂轮
             贝叶斯和 K最近邻其他两种多分类模型。在后续工                               钝化状态识别 [J]. 应用声学, 2019, 38(2): 151–158.
                                                                   Zhong Limin, Li Lujuan, Yang Jing, et al. The blunt state
             作中,如何改进加工工艺和优化模型来提高识别准                                identification of acoustic emission for grinding wheel based
             确率、进一步提高磨削精度是研究重点。                                    on HDP-HSMM[J]. Journal of Applied Acoustics, 2019,
                                                                   38(2): 151–158.
                                                                [10] Bagga P J, Chavda B, Modi V, et al. Indirect tool wear
                                                                   measurement and prediction using multi-sensor data fu-
                            参 考     文   献
                                                                   sion and neural network during machining[J]. Materials
                                                                   Today: Proceedings, 2022, 56(Pt1): 51–55.
              [1] Yang Z S, Yan W, Jin L, et al. A novel feature represen-  [11] Liu C Y, Meerten Y, Declercq K, et al. Vibration-based
                 tation method based on original waveforms for acoustic  gear continuous generating grinding fault classification
                 emission signals[J]. Mechanical Systems and Signal Pro-  and interpretation with deep convolutional neural net-
                 cessing, 2020, 135: 106365.                       work[J]. Journal of Manufacturing Processes, 2022, 79:
              [2] Azarhoushang B, Kitzig-Frank H. Principles of grinding  688–704.
                 processes[M]//Azarhoushang B, Ioan Marinescu D, Rowe  [12] 杨亚森. 插齿刀专用数控磨床数控代码自动编程软件开
                 W B, et al. Tribology and Fundamentals of Abrasive Ma-  发 [D]. 西安: 西安工业大学, 2022.
                 chining Processes. Third Edition. New York: William  [13] 张泽. 插齿刀专用数控磨床模块化设计及动力学分析 [D]. 西
                 Andrew Publishing, 2022: 351–468.                 安: 西安工业大学, 2022.
   247   248   249   250   251   252   253   254   255   256   257