Page 111 - 《应用声学》2025年第3期
P. 111

第 44 卷 第 3 期               杨雪等: 混响室中复合结构吸声性能仿真及应用                                           645


                 a double microperforated panel absorber[J]. Mechanical  nite micro-perforated panel backed by a shunted loud-
                 Science and Technology for Aerospace Engineering, 2008,  speaker[J]. The Journal of the Acoustical Society of Amer-
                 27(11): 1343–1345, 1350.                          ica, 2014, 135(1): 231–238.
              [8] Guo W C, Min H Q. A compound micro-perforated  [18] Ning J F, Geng Q, Arunkumar M P, et al. Wide ab-
                 panel sound absorber with partitioned cavities of differ-  sorption bandwidth of a light composite absorber based
                 ent depths[J]. Energy Procedia, 2015, 78: 1617–1622.  on micro-perforated sandwich panel[J]. Applied Acoustics,
              [9] 杨志刚. 常用穿孔板吸声结构的影响因素分析 [J]. 演艺科技,                 2021, 174: 107735.
                 2020(11): 23–29.                               [19] 裴春明, 周兵, 李登科, 等. 多孔材料和微穿孔板复合吸声结
                 Yang Zhigang. Analysis of influence factors that affect the  构研究 [J]. 噪声与振动控制, 2015, 35(5): 35–38.
                 sound absorption structure of perforated panels[J]. Enter-  Pei Chunming, Zhou Bing, Li Dengke, et al. Study on the
                 tainment Technology, 2020(11): 23–29.             composite sound absorber made up of porous materials
             [10] Gao Y X, Lin Y P, Zhu Y F, et al.  Broadband thin  and MPP[J]. Noise and Vibration Control, 2015, 35(5):
                 sound absorber based on hybrid labyrinthine metastruc-  35–38.
                 tures with optimally designed parameters[J]. Scientific Re-  [20] Bravo T, Maury C, Pinhède C. Sound absorption and
                 ports, 2020, 10(1): 10705.                        transmission through flexible micro-perforated panels
             [11] Tavakkoli Nejad M E, Loghmani A, Ziaei-Rad S. The ef-  backed by an air layer and a thin plate[J]. The Jour-
                 fects of wedge geometrical parameters and arrangement on  nal of the Acoustical Society of America, 2012, 131(5):
                 the sound absorption coefficient—A numerical and exper-  3853–3863.
                 imental study[J]. Applied Acoustics, 2020, 169: 107458.  [21] Lee Y Y, Lee E W M, Ng C F. Sound absorption of a finite
             [12] 赵毅. 多孔材料吸声性能仿真分析与优化 [D]. 重庆: 重庆大                 flexible micro-perforated panel backed by an air cavity[J].
                 学, 2018.                                          Journal of Sound and Vibration, 2005, 287(1–2): 227–243.
             [13] 王飞萌, 王良模, 王陶, 等. 微穿孔板 -三聚氰胺吸音海绵 -空            [22] Ren S W, Van Belle L, Claeys C, et al. Improvement
                 腔复合结构声学性能优化设计 [J]. 北京化工大学学报 (自然科                  of the sound absorption of flexible micro-perforated pan-
                 学版), 2022, 49(1): 113–121.                        els by local resonances[J]. Mechanical Systems and Signal
                 Wang Feimeng, Wang Liangmo, Wang Tao, et al. Opti-  Processing, 2019, 117: 138–156.
                 mization of the acoustic performance of micro-perforated  [23] Ma X Y, Yurchenko D, Chen K A, et al. Structural acous-
                 panel-melamine sound-absorbing sponge-cavity compos-  tic controlled active micro-perforated panel absorber for
                 ite structures[J]. Journal of Beijing University of Chem-  improving wide-band low frequency sound absorption[J].
                 ical Technology (Natural Science Edition), 2022, 49(1):  Mechanical Systems and Signal Processing, 2022, 178:
                 113–121.                                          109295.
             [14] 陈亮, 沈敏, 何为, 等. 微穿孔板 -聚氨酯微孔薄膜复合结构吸             [24] 张苗, 漆琼芳, 罗建军. 吸声系数的传递函数法仿真计算 [J].
                 声特性 [J]. 噪声与振动控制, 2022, 42(3): 36–41.             声学技术, 2021, 40(4): 527–531.
                 Chen Liang, Shen Min, He Wei, et al.  Sound ab-   Zhang Miao, Qi Qiongfang, Luo Jianjun.  Simulative
                 sorption characteristics of micro-perforated panel and  calculation of sound absorption coefficient by transfer
                 polyurethane micro-porous membrane composed struc-  function method[J]. Technical Acoustics, 2021, 40(4):
                 tures[J]. Noise and Vibration Control, 2022, 42(3): 36–41.  527–531.
             [15] Shen J H, Lee H P, Yan X. Design of microperforated  [25] Zhu C Y, Cao H Y, Ding G F, et al. Comparative simula-
                 nanofibrous membrane coated nonwoven structure for  tion study of active sound absorption based on piezoelec-
                 acoustic applications[J]. Nanotechnology, 2022, 33(49):  tric materials[J]. Journal of Donghua University (English
                 495701.                                           Edition), 2024, 41(3): 308–314.
             [16] 李涛, 何宇辰, 姚智敏, 等. 纤维参数对聚酯纤维板吸声性能               [26] 柯李菊, 刘成洋, 方智. 基于 COMSOL 的组合空腔结构声
                 的影响研究 [J]. 功能材料, 2021, 52(6): 6097–6101, 6109.    学覆盖层的声学性能分析 [J]. 中国舰船研究, 2020, 15(5):
                 Li Tao, He Yuchen, Yao Zhimin, et al. Effect of fiber  167–175, 182.
                 parameter on the sound absorption property of polyester  Ke Liju, Liu Chengyang, Fang Zhi.  COMSOL-based
                 fiber panel[J]. Journal of Functional Materials, 2021,  acoustic performance analysis of combined cavity anechoic
                 52(6): 6097–6101, 6109.                           layer[J]. Chinese Journal of Ship Research, 2020, 15(5):
             [17] Tao J C, Jing R X, Qiu X J. Sound absorption of a fi-  167–175, 182.
   106   107   108   109   110   111   112   113   114   115   116