Page 111 - 《应用声学》2025年第3期
P. 111
第 44 卷 第 3 期 杨雪等: 混响室中复合结构吸声性能仿真及应用 645
a double microperforated panel absorber[J]. Mechanical nite micro-perforated panel backed by a shunted loud-
Science and Technology for Aerospace Engineering, 2008, speaker[J]. The Journal of the Acoustical Society of Amer-
27(11): 1343–1345, 1350. ica, 2014, 135(1): 231–238.
[8] Guo W C, Min H Q. A compound micro-perforated [18] Ning J F, Geng Q, Arunkumar M P, et al. Wide ab-
panel sound absorber with partitioned cavities of differ- sorption bandwidth of a light composite absorber based
ent depths[J]. Energy Procedia, 2015, 78: 1617–1622. on micro-perforated sandwich panel[J]. Applied Acoustics,
[9] 杨志刚. 常用穿孔板吸声结构的影响因素分析 [J]. 演艺科技, 2021, 174: 107735.
2020(11): 23–29. [19] 裴春明, 周兵, 李登科, 等. 多孔材料和微穿孔板复合吸声结
Yang Zhigang. Analysis of influence factors that affect the 构研究 [J]. 噪声与振动控制, 2015, 35(5): 35–38.
sound absorption structure of perforated panels[J]. Enter- Pei Chunming, Zhou Bing, Li Dengke, et al. Study on the
tainment Technology, 2020(11): 23–29. composite sound absorber made up of porous materials
[10] Gao Y X, Lin Y P, Zhu Y F, et al. Broadband thin and MPP[J]. Noise and Vibration Control, 2015, 35(5):
sound absorber based on hybrid labyrinthine metastruc- 35–38.
tures with optimally designed parameters[J]. Scientific Re- [20] Bravo T, Maury C, Pinhède C. Sound absorption and
ports, 2020, 10(1): 10705. transmission through flexible micro-perforated panels
[11] Tavakkoli Nejad M E, Loghmani A, Ziaei-Rad S. The ef- backed by an air layer and a thin plate[J]. The Jour-
fects of wedge geometrical parameters and arrangement on nal of the Acoustical Society of America, 2012, 131(5):
the sound absorption coefficient—A numerical and exper- 3853–3863.
imental study[J]. Applied Acoustics, 2020, 169: 107458. [21] Lee Y Y, Lee E W M, Ng C F. Sound absorption of a finite
[12] 赵毅. 多孔材料吸声性能仿真分析与优化 [D]. 重庆: 重庆大 flexible micro-perforated panel backed by an air cavity[J].
学, 2018. Journal of Sound and Vibration, 2005, 287(1–2): 227–243.
[13] 王飞萌, 王良模, 王陶, 等. 微穿孔板 -三聚氰胺吸音海绵 -空 [22] Ren S W, Van Belle L, Claeys C, et al. Improvement
腔复合结构声学性能优化设计 [J]. 北京化工大学学报 (自然科 of the sound absorption of flexible micro-perforated pan-
学版), 2022, 49(1): 113–121. els by local resonances[J]. Mechanical Systems and Signal
Wang Feimeng, Wang Liangmo, Wang Tao, et al. Opti- Processing, 2019, 117: 138–156.
mization of the acoustic performance of micro-perforated [23] Ma X Y, Yurchenko D, Chen K A, et al. Structural acous-
panel-melamine sound-absorbing sponge-cavity compos- tic controlled active micro-perforated panel absorber for
ite structures[J]. Journal of Beijing University of Chem- improving wide-band low frequency sound absorption[J].
ical Technology (Natural Science Edition), 2022, 49(1): Mechanical Systems and Signal Processing, 2022, 178:
113–121. 109295.
[14] 陈亮, 沈敏, 何为, 等. 微穿孔板 -聚氨酯微孔薄膜复合结构吸 [24] 张苗, 漆琼芳, 罗建军. 吸声系数的传递函数法仿真计算 [J].
声特性 [J]. 噪声与振动控制, 2022, 42(3): 36–41. 声学技术, 2021, 40(4): 527–531.
Chen Liang, Shen Min, He Wei, et al. Sound ab- Zhang Miao, Qi Qiongfang, Luo Jianjun. Simulative
sorption characteristics of micro-perforated panel and calculation of sound absorption coefficient by transfer
polyurethane micro-porous membrane composed struc- function method[J]. Technical Acoustics, 2021, 40(4):
tures[J]. Noise and Vibration Control, 2022, 42(3): 36–41. 527–531.
[15] Shen J H, Lee H P, Yan X. Design of microperforated [25] Zhu C Y, Cao H Y, Ding G F, et al. Comparative simula-
nanofibrous membrane coated nonwoven structure for tion study of active sound absorption based on piezoelec-
acoustic applications[J]. Nanotechnology, 2022, 33(49): tric materials[J]. Journal of Donghua University (English
495701. Edition), 2024, 41(3): 308–314.
[16] 李涛, 何宇辰, 姚智敏, 等. 纤维参数对聚酯纤维板吸声性能 [26] 柯李菊, 刘成洋, 方智. 基于 COMSOL 的组合空腔结构声
的影响研究 [J]. 功能材料, 2021, 52(6): 6097–6101, 6109. 学覆盖层的声学性能分析 [J]. 中国舰船研究, 2020, 15(5):
Li Tao, He Yuchen, Yao Zhimin, et al. Effect of fiber 167–175, 182.
parameter on the sound absorption property of polyester Ke Liju, Liu Chengyang, Fang Zhi. COMSOL-based
fiber panel[J]. Journal of Functional Materials, 2021, acoustic performance analysis of combined cavity anechoic
52(6): 6097–6101, 6109. layer[J]. Chinese Journal of Ship Research, 2020, 15(5):
[17] Tao J C, Jing R X, Qiu X J. Sound absorption of a fi- 167–175, 182.