Page 117 - 201805
P. 117
第 37 卷 第 5 期 田野等: 基于相位调控的超高透射声学超表面及其应用 699
40 × 40 个单元,整体几何形状是边长为 20λ 0 的 [3] Tang K, Qiu C, Ke M, et al. Anomalous refraction of air-
正方形, 像平面到超表面的距离 D 为 7 个波长 borne sound through ultrathin metasurfaces[J]. Sci. Rep.,
2014, 4: 6517.
(D = 7λ 0 )。目标图像区域为边长 20λ 0 的正方形 [4] Xie Y, Wang W, Chen H, et al. Wavefront modulation
区域,区域内包含一个四角星图案,其声能量场分布 and subwavelength diffractive acoustics with an acoustic
如图9(b)所示,其声场分布p im (x, y)可表示为 metasurface[J]. Nat. Commun., 2014, 5: 5553.
[5] Mei J, Wu Y. Controllable transmission and total re-
1, (x, y) ∈ 四角星区域, flection through an impedance-matched acoustic metasur-
p im (x, y) = (18) face[J]. New J. Phys., 2014, 16(12): 123007.
[6] Yuan B G, Cheng Y, Liu X J. Conversion of sound ra-
0, (x, y) /∈ 四角星区域.
diation pattern via gradient acoustic metasurface with
根据式 (18),通过迭代角谱法经过 30个迭代周 space-coiling structure[J]. Appl. Phys. Express, 2015,
期后根据式 (2) 进行离散可以计算出超表面的突变 8(2): 027301.
[7] Li Y, Jiang X, Liang B, et al. Metascreen-based acoustic
相位分布,如图9(c)所示,按照此图构建超表面可实 passive phased array[J]. Phys. Rev. Appl., 2015, 4(2):
现声成像。以工作频率为3432 Hz、波长为 0.1 m 为 024003.
例,平面声波垂直入射至按照图9(c)构建的超表面, [8] Cheng Y, Zhou C, Yuan B G, et al. Ultra-sparse meta-
surface for high reflection of low-frequency sound based
基于有限元数值仿真方法,可计算出其像平面上声 on artificial mie resonances[J]. Nat. Mater., 2015, 14(10):
能量场的分布如图 9(d) 所示,可以观察到较满意的 1013.
成像效果。 [9] Jiang X, Li Y, Liang B, et al. Convert acoustic resonances
to orbital angular momentum[J]. Phys. Rev. Lett., 2016,
117(3): 034301.
6 结论 [10] Jiang X, Liang B, Cheng J C, et al. Twisted acoustics:
metasurface-enabled multiplexing and demultiplexing[J].
本文通过镀膜型迷宫结构单元的引入极大地 Adv. Mater., 2018, 30(18): 1800257.
提高了相位调控型超表面的透射效率。基于传统的 [11] Xie Y B, Shen C, Wang W Q, et al. Acoustic holographic
rendering with two-dimensional metamaterial-based pas-
单层简单迷宫结构,在其两侧各加上一层同样由迷 sive phased array[J]. Sci. Rep., 2016, 6: 35437.
宫结构组成的 “增透膜”,可构成高效透射的镀膜型 [12] Zuo S Y, Wei Q, Cheng Y, et al. Mathematical oper-
迷宫结构单元,其透射率相比于传统单层迷宫结构 ations for acoustic signals based on layered labyrinthine
metasurfaces[J]. Appl. Phys. Lett., 2017, 110(1): 011904.
大大提高。镀膜型迷宫结构单元具有极高的透射率 [13] Xie B Y, Tang K, Cheng H, et al. Coding acoustic meta-
(∼ 100%),并且通过改变中间层的齿长可以提供全 surfaces[J]. Adv. Mater., 2017, 29(6): 1603507.
[14] Xie B Y, Cheng H, Tang K, et al. Multiband asymmetric
范围(0 ∼ 2π)的突变相位。镀膜型迷宫结构的相位
transmission of airborne sound by coded metasurfaces[J].
随着齿长几乎呈线性变化,具有较强的鲁棒性。基 Phys. Rev. Appl., 2017, 7(2): 024010.
于广义折射定律,由10种二维镀膜型迷宫结构单元 [15] Li Y, Shen C, Xie Y B, et al. Tunable asymmetric trans-
mission via lossy acoustic metasurfaces[J]. Phys. Rev.
构建的高效透射型超表面分别实现了异常声折射、
Lett., 2017, 119(3): 035501.
声聚焦及声束沿任意凸轨迹弯曲传播等相位调控 [16] Zhang H L, Zhu Y F, Liang B, et al. Omnidirectional
的应用。基于迭代角谱法,由10 种三维镀膜型迷宫 ventilated acoustic barrier[J]. Appl. Phys. Lett., 2017,
111(20): 203502.
结构单元构建的高效透射型超表面则通过调控相
[17] Yu N F, Genevet P, Kats M A, et al. Light propagation
位实现了声成像。超表面的调控灵活性和高效透射 with phase discontinuities: generalized laws of reflection
特性在声波调控领域具有广泛的应用前景。 and refraction[J]. Science, 2011, 334(6054): 333–337.
[18] Li Y, Liang B, Gu Z M, et al. Reflected wavefront manipu-
lation based on ultrathin planar acoustic metasurfaces[J].
参 考 文 献 Sci. Rep., 2013, 3: 2546.
[19] Li Y, Jiang X, Li R Q, et al. Experimental realization of
[1] Cummer S A, Christensen J, Alù A. Controlling sound full control of reflected waves with subwavelength acoustic
with acoustic metamaterials[J]. Nat. Rev. Mater., 2016, metasurfaces[J]. Phys. Rev. Appl., 2014, 2(6): 064002.
1(3): 16001. [20] 杜功焕, 朱哲民, 龚秀芬. 声学基础 [M]. 南京: 南京大学出版
[2] 李勇. 声学超构表面 [J]. 物理, 2017, 46(11): 721–730. 社, 2012.
Li Yong. Acoustic metasurfaces[J]. Physics, 2017, 46(11): [21] Greenfield E, Segev M, Walasik W, et al. Accelerating
721–730. light beams along arbitrary convex trajectories[J]. Phys.