Page 117 - 201805
P. 117

第 37 卷 第 5 期             田野等: 基于相位调控的超高透射声学超表面及其应用                                          699


             40 × 40 个单元,整体几何形状是边长为 20λ 0 的                      [3] Tang K, Qiu C, Ke M, et al. Anomalous refraction of air-
             正方形, 像平面到超表面的距离 D 为 7 个波长                             borne sound through ultrathin metasurfaces[J]. Sci. Rep.,
                                                                   2014, 4: 6517.
             (D = 7λ 0 )。目标图像区域为边长 20λ 0 的正方形                    [4] Xie Y, Wang W, Chen H, et al. Wavefront modulation
             区域,区域内包含一个四角星图案,其声能量场分布                               and subwavelength diffractive acoustics with an acoustic
             如图9(b)所示,其声场分布p im (x, y)可表示为                         metasurface[J]. Nat. Commun., 2014, 5: 5553.
                                                                 [5] Mei J, Wu Y. Controllable transmission and total re-
                           
                           1,  (x, y) ∈ 四角星区域,                    flection through an impedance-matched acoustic metasur-
                           
                p im (x, y) =                          (18)        face[J]. New J. Phys., 2014, 16(12): 123007.
                                                                [6] Yuan B G, Cheng Y, Liu X J. Conversion of sound ra-
                            0,  (x, y) /∈ 四角星区域.
                                                                   diation pattern via gradient acoustic metasurface with
                 根据式 (18),通过迭代角谱法经过 30个迭代周                         space-coiling structure[J]. Appl.  Phys.  Express, 2015,
             期后根据式 (2) 进行离散可以计算出超表面的突变                             8(2): 027301.
                                                                 [7] Li Y, Jiang X, Liang B, et al. Metascreen-based acoustic
             相位分布,如图9(c)所示,按照此图构建超表面可实                             passive phased array[J]. Phys. Rev. Appl., 2015, 4(2):
             现声成像。以工作频率为3432 Hz、波长为 0.1 m 为                        024003.
             例,平面声波垂直入射至按照图9(c)构建的超表面,                           [8] Cheng Y, Zhou C, Yuan B G, et al. Ultra-sparse meta-
                                                                   surface for high reflection of low-frequency sound based
             基于有限元数值仿真方法,可计算出其像平面上声                                on artificial mie resonances[J]. Nat. Mater., 2015, 14(10):
             能量场的分布如图 9(d) 所示,可以观察到较满意的                            1013.
             成像效果。                                               [9] Jiang X, Li Y, Liang B, et al. Convert acoustic resonances
                                                                   to orbital angular momentum[J]. Phys. Rev. Lett., 2016,
                                                                   117(3): 034301.
             6 结论                                               [10] Jiang X, Liang B, Cheng J C, et al. Twisted acoustics:
                                                                   metasurface-enabled multiplexing and demultiplexing[J].
                 本文通过镀膜型迷宫结构单元的引入极大地                               Adv. Mater., 2018, 30(18): 1800257.
             提高了相位调控型超表面的透射效率。基于传统的                             [11] Xie Y B, Shen C, Wang W Q, et al. Acoustic holographic
                                                                   rendering with two-dimensional metamaterial-based pas-
             单层简单迷宫结构,在其两侧各加上一层同样由迷                                sive phased array[J]. Sci. Rep., 2016, 6: 35437.
             宫结构组成的 “增透膜”,可构成高效透射的镀膜型                           [12] Zuo S Y, Wei Q, Cheng Y, et al. Mathematical oper-
             迷宫结构单元,其透射率相比于传统单层迷宫结构                                ations for acoustic signals based on layered labyrinthine
                                                                   metasurfaces[J]. Appl. Phys. Lett., 2017, 110(1): 011904.
             大大提高。镀膜型迷宫结构单元具有极高的透射率                             [13] Xie B Y, Tang K, Cheng H, et al. Coding acoustic meta-
             (∼ 100%),并且通过改变中间层的齿长可以提供全                            surfaces[J]. Adv. Mater., 2017, 29(6): 1603507.
                                                                [14] Xie B Y, Cheng H, Tang K, et al. Multiband asymmetric
             范围(0 ∼ 2π)的突变相位。镀膜型迷宫结构的相位
                                                                   transmission of airborne sound by coded metasurfaces[J].
             随着齿长几乎呈线性变化,具有较强的鲁棒性。基                                Phys. Rev. Appl., 2017, 7(2): 024010.
             于广义折射定律,由10种二维镀膜型迷宫结构单元                            [15] Li Y, Shen C, Xie Y B, et al. Tunable asymmetric trans-
                                                                   mission via lossy acoustic metasurfaces[J]. Phys.  Rev.
             构建的高效透射型超表面分别实现了异常声折射、
                                                                   Lett., 2017, 119(3): 035501.
             声聚焦及声束沿任意凸轨迹弯曲传播等相位调控                              [16] Zhang H L, Zhu Y F, Liang B, et al. Omnidirectional
             的应用。基于迭代角谱法,由10 种三维镀膜型迷宫                              ventilated acoustic barrier[J]. Appl. Phys. Lett., 2017,
                                                                   111(20): 203502.
             结构单元构建的高效透射型超表面则通过调控相
                                                                [17] Yu N F, Genevet P, Kats M A, et al. Light propagation
             位实现了声成像。超表面的调控灵活性和高效透射                                with phase discontinuities: generalized laws of reflection
             特性在声波调控领域具有广泛的应用前景。                                   and refraction[J]. Science, 2011, 334(6054): 333–337.
                                                                [18] Li Y, Liang B, Gu Z M, et al. Reflected wavefront manipu-
                                                                   lation based on ultrathin planar acoustic metasurfaces[J].
                            参 考     文   献                          Sci. Rep., 2013, 3: 2546.
                                                                [19] Li Y, Jiang X, Li R Q, et al. Experimental realization of
              [1] Cummer S A, Christensen J, Alù A. Controlling sound  full control of reflected waves with subwavelength acoustic
                 with acoustic metamaterials[J]. Nat. Rev. Mater., 2016,  metasurfaces[J]. Phys. Rev. Appl., 2014, 2(6): 064002.
                 1(3): 16001.                                   [20] 杜功焕, 朱哲民, 龚秀芬. 声学基础 [M]. 南京: 南京大学出版
              [2] 李勇. 声学超构表面 [J]. 物理, 2017, 46(11): 721–730.       社, 2012.
                 Li Yong. Acoustic metasurfaces[J]. Physics, 2017, 46(11):  [21] Greenfield E, Segev M, Walasik W, et al. Accelerating
                 721–730.                                          light beams along arbitrary convex trajectories[J]. Phys.
   112   113   114   115   116   117   118   119   120   121   122